首页 > 实用范文 > 范文大全 > 初三上册数学知识点归纳(优秀15篇)正文

《初三上册数学知识点归纳(优秀15篇)》

时间:

求学的三个条件是:多观察、多吃苦、多研究。每一门科目都有自己的学习方法,但其实都是万变不离其中的,也是要记、要背、要讲练的。

初中数学复习计划 1

一、复习目标:

(1)使所学知识系统化、结构化、让学生将三年的数学知识连成一个有机整体,更利于学生理解;

(2)精讲多练,巩固基础知识,掌握基本技能;

(3)抓好方法教学,引导学生归纳、总结解题的方法,适应各种题型的变化;

(4)做好综合题训练,提高学生综合运用知识分析问题的能力。

二、复习方法与措施:

考虑到数学复习的时间和任务,中考的数学复习最好分三轮进行。太少,复习没有层次性;太多,时间上不允许。

第一轮,摸清初中数学的知识脉络,开展基础知识系统复习。第一轮复习是总复习的基础,侧重点是双基训练。近几年的中考题安排了较大比例(约70%)的试题来考查“双基”。全卷的基础知识覆盖面较广,起点低,许多试题源于课本,有的是对课本原型进行加工、组合、延伸和拓展。在这个阶段,教师要引导学生扎扎实实地夯实基础。具体的做法是:

1、使学生按照新课程标准的要求去把握各个知识点,特别要记牢记准一些重要的公式、定理、公理等。要提醒学生注意公式、定理中的隐含条件。

2、组织、引导、协助学生将一些相关的、相近的知识点进行整理和比较,掌握基础知识之间的联系,要做到理清知识结构,形成知识体系,并能综合运用。例如,在复习绝对值的性质时,可以将绝对值的非负性和平方、算术平方根的非负性联系起来。还要提醒学生注意:几个非负数的和如果为零,那么这几个数都必须同时为零。

3、通过例题和习题,使学生在做题中注意规范的解题格式和步骤,对基本的解题方法进行归纳和整理,做到举一反三,触类旁通。例如,在进行有理数的加、减、乘、除、乘方等基本运算时,要提醒学生每一种运算都要“先确定符号,再确定绝对值”。在求证线段或角相等的证明题时,常见的方法是证明三角形全等。

第二轮,针对综合性较强的难点和与社会生活相联系的热点,开展专题复习。

第二轮复习是总复习的提高阶段,侧重点是思考方法和思维能力、综合能力的训练。随着课程改革的深入,实践探索题、动态分析题等开放性题目越来越多,总复习时我们就应该引导学生加强这些方面的探讨和学习,掌握解决这类题型的方法和技巧。具体的做法是:

1、针对中考的特点,可以从以下几个方面收集一些资料,进行专项训练:

①实际应用型问题;

②突出科技发展、信息资源转化的图表信息题;

③体现自学能力考查的阅读理解题;

④考查学生应变能力的图形变化题、开放性试题;

⑤考查学生思维能力、创新意识的归纳猜想、操作探究性试题;

⑥几何代数综合型试题等。

2、引导和协助学生总结上述问题的解题技法。例如,在解答实际应用型问题时,可引导学生从复杂的实际问题中抽象出简单的数学模型,并学会运用表格或者图形分析问题中的数量关系。在解答归纳猜想、总结规律的问题时,可引导学生先找出问题中的“变”与“不变”,再找“变”量之间的关系,掌握“从特殊到一般”的思维方法。

3、培养学生良好的解题习惯。在进行专题训练时,要求学生思维要严密,必要时要分类讨论;解题过程要有逻辑性,每一步都必须有理有据,千万不能想当然;解题结束时要进行简单的检验,要注意解题结果是否符合题义或者实际意义等。

第三轮,模拟中考的特点和要求,开展“实战演习”。

第三轮复习是总复习的升华阶段,侧重点是解题速度和考试心理的训练。中考时,要求学生在规定的90分钟内做完试卷,并且需要一定的检查时间,这就需要学生在考试时尽量提高解题速度,切不可懈怠。考试的时间紧,任务重;再加上中考的组织比学生以前的任何一次考试都要严格,考场气氛紧张;竞争激烈,学生升学压力大等诸多因素很容易造成学生紧张、心慌、怯场等,从而影响学生考试的发挥。因此,在第三轮复习时,需要针对学生的解题速度和考试心理进行“演习”训练。具体做法是:

1、从往年中考卷、自编模拟试卷中精选3至5份进行“实战演习”。“演习”时要严格按照中考的要求,包括考试时间、试题份量、试卷的批改等。并且,在每一次“演习”后都要及时引导学生进行总结和评价,指导并协助学生解决在“演习”中出现的各种问题。

2、在中考前两天,要求学生将知识点浏览一遍,并回味自己原来容易出错的问题和一些典型问题的解题方法和技巧。

3、对学生进行必要的心理辅导并提醒学生考试时应注意的问题。比如,把握和分配好考试的时间;遇见难题时不要心慌等。

初三数学学习方法 2

概念课

要重视教学过程,要积极体验知识产生、发展的过程,要把知识的来龙去脉搞清楚,认识知识发生的过程,理解公式、定理、法则的推导过程,改变死记硬背的方法,这样我们就能从知识形成、发展过程当中,理解到学会它的乐趣;在解决问题的过程中,体会到成功的喜悦。

习题课

要掌握“听一遍不如看一遍,看一遍不如做一遍,做一遍不如讲一遍,讲一遍不如辩一辩”的诀窍。除了听老师讲,看老师做以外,要自己多做习题,而且要把自己的体会主动、大胆地讲给大家听,遇到问题要和同学、老师辩一辩,坚持真理,改正错误。在听课时要注意老师展示的解题思维过程,要多思考、多探究、多尝试,发现创造性的证法及解法,学会“小题大做”和“大题小做”的解题方法,即对选择题、填空题一类的客观题要认真对待绝不粗心大意,就像对待大题目一样,做到下笔如有神;对综合题这样的大题目不妨把“大”拆“小”,以“退”为“进”,也就是把一个比较复杂的问题,拆成或退为最简单、最原始的问题,把这些小题、简单问题想通、想透,找出规律,然后再来一个飞跃,进一步升华,就能凑成一个大题,即退中求进了。如果有了这种分解、综合的能力,加上有扎实的基本功还有什么题目难得倒我们。

复习课

在数学学习过程中,要有一个清醒的复习意识,逐渐养成良好的复习习惯,从而逐步学会学习。数学复习应是一个反思性学习过程。要反思对所学习的知识、技能有没有达到课程所要求的程度;要反思学习中涉及到了哪些数学思想方法,这些数学思想方法是如何运用的,运用过程中有什么特点;要反思基本问题(包括基本图形、图像等),典型问题有没有真正弄懂弄通了,平时碰到的问题中有哪些问题可归结为这些基本问题;要反思自己的错误,找出产生错误的原因,订出改正的措施。在新学期大家准备一本数学学习“病例卡”,把平时犯的错误记下来,找出“病因”开出“处方”,并且经常拿出来看看、想想错在哪里,为什么会错,怎么改正,通过你的努力,到中考时你的数学就没有什么“病例”了。并且数学复习应在数学知识的运用过程中进行,通过运用,达到深化理解、发展能力的目的,因此在新的一年要在教师的指导下做一定数量的数学习题,做到举一反三、熟练应用,避免以“练”代“复”的题海战术。

矩形 3

1、定义:有一个角是直角的平行四边形叫矩形。矩形是特殊的平行四边形。

2、性质:(1)具有平行四边形的性质,(2)对角线相等,(3)四个角都是直角。

(4)矩形是轴对称图形,有两条对称轴。

3、判定:(1)有三个角是直角的四边形是矩形。

(2)对角线相等的平行四边形是矩形。

初三上册数学复习知识点 4

一、能正确理解实数的有关概念

我们已经知道整数和统称为。并规定无限不循环是无理数,这样我们把有理数和无理数� 学习时应注意分清有理数和无理数是两类完全不同的数,就是说如果一个数是有理数,那么它一定不是无理数,反之,如果一个数是无理数,那么它一定不是有理数。

二、正确理解实数的分类

实数的分类可从两个角度去思考,即(1)按定义来分类;(2)按正、来分类。但要注意0在实数里也扮演着重要角色。我们通常把正实数和0合称为非负数,把负实数和0合称为非正数。

三、正确理解实数与数轴的关系

实数与数轴上的点是一一对应的,就是说所有的实数都可以用数轴上的点来表示;反之,数轴上的每一个点都表示一个实数。数轴上的任一点表示的数,是有理数,就是无理数。

在数轴上,表示相反数的两个点在原点的两旁,并且两点到原点的距离相等。实数a的绝对值就是在数轴上这个数对应的点与原点的距离。

利用数轴可以比较任意两个实数的大小,即在数轴上表示的两个实数,绝对值大的反而小。

四、熟练掌握实数的有关性质

实数和有理数一样也有许多的重要性质。具体地讲可从以下几方面去思考:

1,相反数实数a的相反数是-a,0的相反数是0,具体地,若a与b互为相反数,则a+b=0;反之,若a+b=0,则a与b互为相反数。

2,绝对值一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数,0的绝对值是0.实数a的绝对值可表示就是说实数a的绝对值一定是一个非负数,

3,倒数乘积为1的两个实数互为倒数,即若a与b互为倒数,则ab=1;反之,若ab=1,则a与b互为倒数。这里应特别注意的是0没有倒数。

4,实数大小的比较任意两个实数都可以比较大小,正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小。

5,实数的运算实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方。在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行。另外,有理数的运算律在实数范围内仍然适用。

九年级上册数学复习资料 5

考点1:确定事件和随机事件

考核要求:

(1)理解必然事件、不可能事件、随机事件的概念,知道确定事件与必然事件、不可能事件的关系;

(2)能区分简单生活事件中的必然事件、不可能事件、随机事件。

考点2:事件发生的可能性大小,事件的概率

考核要求:

(1)知道各种事件发生的可能性大小不同,能判断一些随机事件发生的可能事件的大小并排出大小顺序;

(2)知道概率的含义和表示符号,了解必然事件、不可能事件的概率和随机事件概率的取值范围;

(3)理解随机事件发生的频率之间的区别和联系,会根据大数次试验所得频率估计事件的概率。

注意:

(1)在给可能性的大小排序前可先用“一定发生”、“很有可能发生”、“可能发生”、“不太可能发生”、“一定不会发生”等词语来表述事件发生的可能性的大小;

(2)事件的概率是确定的常数,而概率是不确定的,可是近似值,与试验的次数的多少有关,只有当试验次数足够大时才能更精确。

考点3:等可能试验中事件的概率问题及概率计算

考核要求

(1)理解等可能试验的概念,会用等可能试验中事件概率计算公式来计算简单事件的概率;

(2)会用枚举法或画“树形图”方法求等可能事件的概率,会用区域面积之比解决简单的概率问题;

(3)形成对概率的初步认识,了解机会与风险、规则公平性与决策合理性等简单概率问题。

注意:

(1)计算前要先确定是否为可能事件;

(2)用枚举法或画“树形图”方法求等可能事件的概率过程中要将所有等可能情况考虑完整。

考点4:数据整理与统计图表

考核要求:

(1)知道数据整理分析的意义,知道普查和抽样调查这两种收集数据的方法及其区别;

(2)结合有关代数、几何的内容,掌握用折线图、扇形图、条形图等整理数据的方法,并能通过图表获取有关信息。

考点5:统计的含义

考核要求:

(1)知道统计的意义和一般研究过程;

(2)认识个体、总体和样本的区别,了解样本估计总体的思想方法。

考点6:平均数、加权平均数的概念和计算

考核要求:

(1)理解平均数、加权平均数的概念;

(2)掌握平均数、加权平均数的计算公式。注意:在计算平均数、加权平均数时要防止数据漏抄、重抄、错抄等错误现象,提高运算准确率。

考点7:中位数、众数、方差、标准差的概念和计算

考核要求:

(1)知道中位数、众数、方差、标准差的概念;

(2)会求一组数据的中位数、众数、方差、标准差,并能用于解决简单的统计问题。

初三数学复习资料 6

因式分解的方法

1、十字相乘法

(1)把二次项系数和常数项分别分解因数;

(2)尝试十字图,使经过十字交叉线相乘后所得的数的和为一次项系数;

(3)确定合适的十字图并写出因式分解的结果;

(4)检验。

2、提公因式法

(1)找出公因式;

(2)提公因式并确定另一个因式;

①找公因式可按照确定公因式的方法先确定系数再确定字母;

②提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;

③提完公因式后,另一因式的项数与原多项式的项数相同。

3、待定系数法

(1)确定所求问题含待定系数的一般解析式;

(2)根据恒等条件,列出一组含待定系数的方程;

(3)解方程或消去待定系数,从而使问题得到解决。

正方形 7

1、定义:一组邻边相等且有一个角是直角的平行四边形叫做正方形。

2、性质:正方形具有平行四边形、矩形、菱形的一切性质。

3、判定:(1)有一个内角是直角的菱形是正方形;

(2)有一组邻边相等的矩形是正方形;

(3)对角线相等的菱形是正方形;

(4)对角线互相垂直的矩形是正方形。

平行四边的定义 8

1、定义:两线对边分别平行的四边形叫做平行四边形,

2、性质:(1)平行四边形的对边相等,(2)对角相等,(3)对角线互相平分。

3、判定:(1)一组对边平行且相等的四边形是平行四边形。

(2)两条对角线互相平分的四边形是平行四边形。

(3)两组对边分别相等的四边形是平行四边形。

(4)两组对角分别相等的四边形是平行四边形。

(5)一组对边平行,一组对角相等的四边形是平行四边形。

(6)一组对边平行,一条对角线被另一条对角线平分的四边形是平行四边形。

两个假命题:(1)一组对边平行,另一组对边相等的四边形是平行四边形。

(2)一组对边相等,一组对角相等的四边形是平行四边形。

菱形 9

1、定义:一组邻边相等的平行四边形叫做菱形。

2、性质:(1)具有平行四边形的性质,(2)四条边都相等,(3)两条对角线互相垂直,每一条对角线平分一组对角。(4)菱形是轴对称图形,每条对角线所在的直线都是对称轴。

3、判定:(1)四条边都相等的四边形是菱形。

(2)对角线互相垂直的平行四边形是菱形。

(3)一条对角线平分一组对角的平行四边形是菱形。

等腰三角形 10

1、定义:有两边相等的三角形是等腰三角形。

2、性质:1.等腰三角形的两个底角相等(简写成“等边对等角”)

2.等腰三角形的顶角的平分线,底边上的中线,底边上的高的重合(“三线合一”)

3.等腰三角形的两底角的平分线相等。(两条腰上的中线相等,两条腰上的高相等)

4.等腰三角形底边上的垂直平分线上的点到两条腰的距离相等。

5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半

6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(可用等面积法证)

7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴

3、判定:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。

特殊的等腰三角形

等边三角形

1、定义:三条边都相等的三角形叫做等边三角形,又叫做正三角形。

(注意:若三角形三条边都相等则说这个三角形为等边三角形,而一般不称这个三角形为等腰三角形)。

2、性质:⑴等边三角形的内角都相等,且均为60度。

⑵等边三角形每一条边上的中线、高线和每个角的角平分线互相重合。

⑶等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线或所对角的平分线所在直线。

3、判定:⑴三边相等的三角形是等边三角形。

⑵三个内角都相等的三角形是等边三角形。

⑶有一个角是60度的等腰三角形是等边三角形。

⑷有两个角等于60度的三角形是等边三角形。

初三新学期数学知识点 11

1、代数式与有理式

用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。

整式和分式�

2、整式和分式

含有加、减、乘、除、乘方运算的代数式叫做有理式。

没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。

有除法运算并且除式中含有字母的有理式叫做分式。

3、单项式与多项式

没有加减运算的整式叫做单项式(数字与字母的积—包括单独的一个数或字母)。

几个单项式的和,叫做多项式。

说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。划分代数式类别时,是从外形来看。如=x,=│x│等。

4、系数与指数

区别与联系:①从位置上看;②从表示的意义上看;

5、同类项及其合并

条件:①字母相同;②相同字母的指数相同

合并依据:乘法分配律

6、根式

表示方根的代数式叫做根式。

含有关于字母开方运算的代数式叫做无理式。

注意:①从外形上判断;②区别:是根式,但不是无理式(是无理数)。

7、算术平方根

⑴正数a的正的'平方根([a≥0—与“平方根”的区别]);

⑵算术平方根与绝对值

①联系:都是非负数,=│a│

②区别:│a│中,a为一切实数;中,a为非负数。

8、同类二次根式、最简二次根式、分母有理化

化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。

满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。

把分母中的根号划去叫做分母有理化。

9、指数

⑴(—幂,乘方运算)。

①a>0时,>0;②a<0时,>0(n是偶数),<0(n是奇数)。

⑵零指数:=1(a≠0)。

负整指数:=1/(a≠0,p是正整数)。

直角三角形全等 12

1、直角三角形全等的判定有5种:

(1)、两角及其夹边对应相等的两个三角形全等;(ASA)

(2)、两边及其夹角对应相等的两个三角形全等;(SAS)

(3)、三边对应相等的两个三角形全等;(SSS)

(4)、两角及其中一角的对边对应相等的两个三角形全等;(AAS)

(5)、斜边及一条直角边对应相等的两个三角形全等;(HL)

2、在直角三角形中,如有一个内角等于30º,那么它所对的直角边等于斜边的一半

3、在直角三角形中,斜边上的中线等于斜边的一半

4垂直平分线:垂直于一条线段并且平分这条线段的直线。

性质:线段垂直平分线上的点到这一条线段两个端点距离相等。

判定:到一条线段两端点距离相等的点,在这条线段的垂直平分线上。

5、三角形的三边的垂直平分线交于一点,并且这个点到三个顶点的距离相等,交点为三角形的外心。

6、角平分线上的点到角两边的距离相等。

7、在角内部的,如果一点到角两边的距离相等,则它在该角的平分线上。

8、角平分线是到角的两边距离相等的所有点的集合。

9、三角形三条角平分线交于一点,并且交点到三边距离相等,交�

10、三角形三条中线交于一点,交点为三角形的重心。

11、三角形三条高线交于一点,交点为三角形的垂心。

数学九年级上册重点知识点 13

一元二次方程

1、认识一元二次方程

只含有一个未知数的整式方程,且都可以化为ax2+bx+c=0

(a、b、c为常数,a≠0)的形式,这样的方程叫一元二次方程。

把ax2+bx+c=0(a、b、c为常数,a�

2、用配方法求解一元二次方程

①配方法<即将其变为(x+m)2=0的形式>

配方法解一元二次方程的基本步骤:

把方程化成一元二次方程的一般形式;

将二次项系数化成1;

把常数项移到方程的右边;

两边加上一次项系数的一半的平方;

把方程转化成的形式;

两边开方求其根。

3、用公式法求解一元二次方程

②公式法(注意在找abc时须先把方程化为一般形式)

4、用因式分解法求解一元二次方程

③分解因式法

把方程的一边变成0,另一边变成两个一次因式的乘积来求解。(主要包括“提公因式”和“十字相乘”)

5、一元二次方程的根与系数的关系

①根与系数的关系:

当b2-4ac>0时,方程有两个不等的实数根;

当b2-4ac=0时,方程有两个相等的实数根;

当b2-4ac<0时,方程无实数根。

②如果一元二次方程ax2+bx+c=0的两根分别为x1、x2,则有:

③一元二次方程的根与系数的关系的作用:

已知方程的一根,求另一根;

不解方程,求二次方程的根x1、x2的对称式的值,特别注意以下公式:

已知方程的两根x1、x2,可以构造一元二次方程:

x2-(x1+x2)x+x1x2=0

已知两数x1、x2的和与积,求此两数的问题,可以转化为求一元二次方程x2-(x1+x2)x+x1x2=0的根

6、应用一元二次方程

在利用方程来解应用题时,主要分为两个步骤:

设未知数(在设未知数时,大多数情况只要设问题为x;但也有时也须根据已知条件及等量关系等诸多方面考虑);

寻找等量关系(一般地,题目中会含有一表述等量关系的句子,只须找到此句话即可根据其列出方程)。

初三数学上册知识点归纳 14

1、绝对值

一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

(1)一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.即:﹝另有两种写法﹞

(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值就是数轴上表示这个数的点到原点的距离。

(3)几个非负数的和等于零则每个非负数都等于零。

注意:│a│≥0,符号"││"是"非负数"的标志;数a的绝对值只有一个;处理任何类型的题目,只要其中有"││"出现,其关键一步是去掉"││"符号。

2、解一元二次方程

解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。

(1)直接开平方法:

用直接开平方法解形如(x-m)2=n(n≥0)的方程,其解为x=±m.

直接开平方法就是平方的逆运算。通常用根号表示其运算结果。

(2)配方法

通过配成完全平方式的方法,得到一元二次方程的根的方法。这种解一元二次方程的方法称为配方法,配方的依据是完全平方公式。

1)转化:将此一元二次方程化为ax^2+bx+c=0的形式(即一元二次方程的一般形式)

2)系数化1:将二次项系数化为1

3)移项:将常数项移到等号右侧

4)配方:等号左右两边同时加上一次项系数一半的平方

5)变形:将等号左边的代数式写成完全平方形式

6)开方:左右同时开平方

7)求解:整理即可得到原方程的根

(3)公式法

公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项系数a,b,c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。

初中数学学科教学计划 15

一、指导思想

教育学生掌握初中数学学习常规,掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算,逐步学会观察分析、综合、抽象、概括。会用归纳演绎、类比进行简单的推理。使学生懂得数学来源于实践又反过来作用于实践。提高学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态度。顽强的学习毅力和独立思考、探索的新思想。培养学生应用数学知识解决问题的能力。

二、学情分析

从学生的成绩来看,比较理想。两个班的优生只有二十个,仅占百分之十,而学困生接近百分之四十大部分同学的数学成绩不理想,大部分学生数学基础差,底子薄给教学带来了一定的。困难,所以今年的教学任务较重。所以要根据实际情况,面对全体,因材施教,对于学习较差的同学今年进行小组辅导,对特别差的学生可以进行个别辅导

三、在教学过程中抓住以下几个环节

1、发挥集体智慧,认真进行集体备课。

新的学期,初中数学课课节较少,怎么能在有限的时间里提高学习效率是所有数学老师面对的问题?在这里,学校给我们明确了方向。加强集体备课,发挥集体智慧,认真研究教材及课程标准,争取每节课前,与同组同仁们讨论、研究确定教学的重点、难点、教学目标、教法、学法,精心设计教学过程,重视每一章节内容与前后知识的联系及其地位,甚至例题的选用,作业的布置等等,让每一节课上出实效,让每位学生愉悦的获得新知。

2、学习和强化“自主学习”与分层教学实践

新的学期,我校所有学科都主张自主学习与集体备课,争取每节课前,与同组同仁们讨论、研究确定重点、难点、教学目标、教法、学法,精心设计教学过程,重视每一章节内容与前后知识的联系及其地位,甚至例题的选用,作业的布置等等通过学案的使用,能够使学生明确学习任务,了解教学目标,对于课堂教学省时高效,取得事半功倍的好效果

3、抓住课堂45分钟严格按照教学计划,备课统一进度,统一练习,进行教学,在备好课的基础上,上好每一个45分钟,提高45分钟的效率,让每一位同学都听的懂,对部分基础较差者要循序渐进,以选用的例题的难易程度不同,争取每节课达到教学目标,突出重点,分散难点,增大课堂容量组织学生人人参与课堂活动,使每个学生积极主动参与课堂活动,使每个学生动手、动口、动脑,能“吃”饱、“吃”好。

4、多读书,读好书和积极开展我的三分钟,我展示活动

多读几本对自己有帮助的书,既提高了自己的能力,又丰富了自己的视野,使自己不被时代所抛弃。“我的三分钟我展示活动”对于教学起了推动促进的作用。通过活动的开展,提高了同学们的学习兴趣,同时又提高了同学们的讲解能力。促进了师生之间的关系。

5、积极投身到培养学生的良好的学习习惯中去。

今年,我们数学组课题是培养学生的良好的学习习惯。好的学习习惯不是一朝一夕就能够养成的,需要教师的督促,学生的坚持,才能成功。

6、注重课后反思,课后反溃及时的将一节课的得失记录下来,不断积累教学经验。总结好下一次应注意的细节。精选适当的练习题、测试卷,及时批改作业,发现问题对症下药。及时反馈信息提高课堂效益,给学生面对面的指出并指导学生搞懂弄通,今天的任务不推托到明日,不留一个疑难点,让学生学有所获。

7、重视单元检测,认真做好教学质量分析。使用学科组教师共同研讨、筛选的同一份试题,测验试题的批改不过夜。测试后必须进行质量分析,评价必须使用等级。按时检验学习成果,做到课标达成的有效、及时,考核后对典型错误利用学生想马上知道答案的心理立即点评。

四、不断钻研业务,提高业务能力及水平。

切实重视听评课,确保每周听课至少1节。积极参加业务学习,看书、看报,参加各级教研组织的培训和系列课达标,使之更好的为基础教育的改革努力,掌握新的技能、技巧,不断努力,取长补短,扬长避短,努力使教学更务实,方法更灵活,手段更先进。通过听课、评课、说课等方式,努力提高自身的业务水平。

五、需要注意的方面:

1、在课堂上改进教学方法,多采用探索、启发式教学。

2、注意教科书的系统性和学科知识的整合,使学生牢固掌握旧知识的基础上,学习新知识,明确新旧知识的联系。

3、注意发展学生探索知识的能力,提高学生分析问题的能力。

4、加强开放性问题、探究性问题教学,培养学生创新意识、探究能力。

5、鼓励合作学习,加强个别辅导,提高差生成绩。

6、注意解题方法和解题策略的学习。

7、因材施教,宽容爱护学生,充分发挥学生的主体作用。