首页 > 实用范文 > 范文大全 > 数学八年级下册复习提纲优秀4篇正文

《数学八年级下册复习提纲优秀4篇》

时间:

步入初中,随着知识点的增多,越来越多的初中生表示数学很难,其实你要学会做复习提纲,下面是的小编为您带来的数学八年级下册复习提纲优秀4篇,您的肯定与分享是对小编最大的鼓励。

数学冲刺学习法 篇1

很多同学在听课的过程中,只是简简单单的听,不能主动思考,这样遇到实际问题时,会无从下手,不知如何应用所学的知识去解答问题。

主要原因还是听课过程中不思考惹的祸。除了我们跟着老师的思路走,还要多想想为什么要这么定义,这样解题的好处是什么,这样主动去想,不仅能让我们更加认真的听课,也能激发对某些知识的兴趣,更有助于学习。

靠着老师的引导,去思考解题的思路;答案真的不重要;重要的是方法!

数学解题不要局限于本题,而要做到举一反三、多思多想,解答完一个题目,要想想有没有其他更加简便的方法,这样能够帮助大家拓宽思路,这样在以后的做题过程中就会有更多的选择。

数学八年级下册复习提纲 篇2

二次根式的乘除

1、积的算数平方根的性质

列如:√ab=√a?√b(a≥0,b≥0)

2、乘法法则

列如:√a?√b=√ab(a≥0,b≥0)

二次根式的乘法运算法则,用语言叙述为:两个因式的算术平方根的积,等于这两个因式积的算术平方根。

3、除法法则

√a÷√b=√a÷b(a≥0,b>0)

二次根式的除法运算法则,用语言叙述为:两个数的算术平方根的商,等于这两个数商的算术平方根。

4、有理化根式。

如果两个含有根式的代数式的积不再含有根式,那么这两个代数式叫做有理化根式,也称有理化因式。

二次根式

I.二次根式的定义和概念

1、定义:一般地,形如√ā(a≥0)的代数式叫做二次根式。当a>0时,√a表示a的算数平方根,√0=0

2、概念:式子√ā(a≥0)叫二次根式。√ā(a≥0)是一个非负数。

II.二次根式√ā的简单性质和几何意义

1)a≥0;√ā≥0[双重非负性]

2)(√ā)^2=a(a≥0)[任何一个非负数都可以写成一个数的平方的形式]

3)√(a^2+b^2)表示平面间两点之间的距离,即勾股定理推论。

III.二次根式的性质和最简二次根式

1)二次根式√ā的化简

a(a≥0)

√ā=|a|={

-a(a<0)

2)积的平方根与商的平方根

√ab=√a?√b(a≥0,b≥0)

√a/b=√a/√b(a≥0,b>0)

3)最简二次根式

条件:

(1)被开方数的因数是整数或字母,因式是整式;

(2)被开方数中不含有可化为平方数或平方式的因数或因式。

如:不含有可化为平方数或平方式的因数或因式的有√2、√3、√a(a≥0)、√x+y等;

含有可化为平方数或平方式的因数或因式的有√4、√9、√a^2、√(x+y)^2、√x^2+2xy+y^2等

分式的乘除法

1、把一个分式的分子与分母的公因式约去,叫做分式的约分。

2、分式进行约分的目的是要把这个分式化为最简分式

3、如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式。如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分。

4、分式约分中注意正确运用乘方的符号法则

如:x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.

5、分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理。当然,简单的分式之分子分母可直接乘方。

6、注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减。

八年级数学下册复习提纲 篇3

第一章 一元一次不等式和一元一次不等式组

一、一般地,用符号(或),(或)连接的式子叫做不等式。

能使不等式成立的未知数的值,叫做不等式的解。 不等式的解不,把所有满足不等式的解集合在一起,构成不等式的解集。 求不等式解集的过程叫解不等式。

由几个一元一次不等式组所组成的不等式组叫做一元一次不等式组

不等式组的解集 :一元一次不等式组各个不等式的解集的公共部分。

等式基本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式。 基本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式。

二、不等式的基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变。 (注:移项要变号,但不等号不变。)性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。不等式的基本性质1、 若ab, 则a+cb+c;2、若ab, c0 则acbc若c0, 则ac不等式的其他性质:反射性:若ab,则bb,且bc,则ac

三、解不等式的步骤:1、去分母; 2、去括号; 3、移项合并同类项; 4、系数化为1. 四、解不等式组的步骤:1、解出不等式的解集2、在同一数轴表示不等式的解集。 五、列一元一次不等式组解实际问题的一般步骤:(1) 审题;(2)设未知数,找(不等量)关系式;(3)设元,(根据不等量)关系式列不等式(组)(4)解不等式组;检验并作答。

六、常考题型: 1、 求4x-6 7x-12的非负数解。 2、已知3(x-a)=x-a+1r的解适合2(x-5) 8a,求a 的范围。

3、当m取何值时,3x+m-2(m+2)=3m+x的解在-5和5之间。

第二章 分解因式

一、公式:1、 ma+mb+mc=m(a+b+c)2、a2-b2=(a+b)(a-b)3、a22ab+b2=(ab)2 二、把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式。 1、把几个整式的积化成一个多项式的形式,是乘法运算。2、把一个多项式化成几个整式的积的形式,是因式分解。3、ma+mb+mc m(a+b+c)4、因式分解与整式乘法是相反方向的变形。

三、把多项式的各项都含有的相同因式,叫做这个多项式的各项的公因式。提公因式法分解因式就是把一个多项式化成单项式与多项式相乘的形式。 找公因式的一般步骤:(1)若各项系数是整系数,取系数的公约数;(2)取相同的字母,字母的指数取较低的;(3)取相同的多项式,多项式的指数取较低的。(4)所有这些因式的乘积即为公因式。

四、分解因式的一般步骤为:(1)若有-先提取-,若多项式各项有公因式,则再提取公因式。(2)若多项式各项没有公因式,则根据多项式特点,选用平方差公式或完全平方公式。(3)每一个多项式都要分解到不能再分解为止。

五、形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式。 分解因式的方法:1、提公因式法。2、运用公式法。

第三章 分式

注:1对于任意一个分式,分母都不能为零。

2分式与整式不同的是:分式的分母中含有字母,整式的分母中不含字母。

3分式的值为零含两层意思:分母不等于零;分子等于零。( 中B0时,分式有意义;分式 中,当B=0分式无意义;当A=0且B0时,分式的值为零。)

常考知识点:1、分式的意义,分式的化简。2、分式的加减乘除运算。3、分式方程的解法及其利用分式方程解应用题。

第四章 相似图形

一、 定义 表示两个比相等的式子叫比例。如果a与b的比值和c与d的比值相等,那么 或a∶b=c∶d,这时组成比例的四个数a,b,c,d叫做比例的项,两端的两项叫做外项,中间的两项叫做内项。即a、d为外项,c、b为内项。 如果选用同一个长度单位量得两条线段AB、CD的长度分别是m、n,那么就说这两条线段的比(ratio)AB∶CD=m∶n,或写成 = ,其中,线段AB、CD分别叫做这两个线段比的前项和后项。如果把 表示成比值k,则 =k或AB=kCD. 四条线段a,b,c,d中,如果a与b的比等于c与d的比,(★)即 ,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段。 黄金分割的定义:在线段AB上,点C把线段AB分成两条线段AC和BC,如果 ,那么称线段AB被点C黄金分割(golden section),点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比。其中 0.618. 引理:平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例。 相似多边形: 对应角相等,对应边成比例的两个多边形叫做相似多边形。 相似多边形:各角对应相等、各边对应成比例的两个多边形叫做相似多边形。 相似比:相似多边形对应边的比叫做相似比。

二、比例的基本性质:1、若ad=bc(a,b,c,d都不等于0),那么 。如果(b,d都不为0),那么ad=bc.2、合比性质:如果 ,那么 。3、等比性质:如果 == (b+d++n0),那么 。4、更比性质:若 那么 。5、反比性质:若 那么

三、求两条线段的比时要注意的问题:(1)两条线段的长度必须用同一长度单位表示,如果单位长度不同,应先化成同一单位,再求它们的比;(2)两条线段的比,没有长度单位,它与所采用的长度单位无关;(3)两条线段的长度都是正数,所以两条线段的比值总是正数。

四、相似三角形(多边形)的性质:相似三角形对应角相等,对应边成比例,相似三角形对应高的比、对应角平分线的比和对应中线的比都等于相似比。相似多边形的周长比等于相似比,面积比等于相似比的平方。

五、全等三角形的判定方法有:ASA,AAS,SAS,SSS,直角三角形除此之外再加HL

六、相似三角形的判定方法,判断方法有:1.三边对应成比例的两个三角形相似;2.两角对应相等的两个三角形相似;3.两边对应成比例且夹角相等;4.定义法: 对应角相等,对应边成比例的两个三角形相似。5、定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。 在特殊的三角形中,有的相似,有的不相似。1、两个全等三角形一定相似。2、两个等腰直角三角形一定相似。3、两个等边三角形一定相似。4、两个直角三角形和两个等腰三角形不一定相似。

七、位似图形上任意一对对应点到位似中心的距离之比等于位似比。 如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫位似中心,这时的相似比又称为位似比。

八、常考知识点:1、比例的基本性质,黄金分割比,位似图形的性质。2、相似三角形的性质及判定。相似多边形的性质。

第五章 数据的收集与处理

(1)普查的定义:这种为了一定目的而对考察对象进行的全面调查,称为普查。(2)总体:其中所要考察对象的全体称为总体。(3)个体:组成总体的每个考察对象称为个体(4)抽样调查:(sampling investigation):从总体中抽取部分个体进行调查,这种调查称为抽样调查。(5)样本(sample):其中从总体中抽取的一部分个体叫做总体的一个样本。(6) 当总体中的个体数目较多时,为了节省时间、人力、物力,可采用抽样调查。为了获得较为准确的调查结果,抽样时要注意样本的代表性和广泛性。还要注意关注样本的大小。 (7)我们称每个对象出现的次数为频数。而每个对象出现的次数与总次数的比值为频率。

数据波动的统计量:极差:指一组数据中数据与最小数据的差。方差:是各个数据与平均数之差的平方的平均数。标准差:方差的算术平方根。识记其计算公式。一组数据的极差,方差或标准差越小,这组数据就越稳定。还要知平均数,众数,中位数的定义。

刻画平均水平用:平均数,众数,中位数。 刻画离散程度用:极差,方差,标准差。

常考知识点:1、作频数分布表,作频数分布直方图。2、利用方差比较数据的稳定性。3、平均数,中位数,众数,极差,方差,标准差的求法。3、频率,样本的定义

第六章 证明

一、对事情作出判断的句子,就叫做命题。 即:命题是判断一件事情的句子。一般情况下:疑问句不是命题。图形的作法不是命题。 每个命题都有条件(condition)和结论(conclusion)两部分组成。 条件是已知的事项,结论是由已知事项推断出的事项。 一般地,命题都可以写成如果,那么的形式。其中如果引出的部分是条件,那么引出的部分是结论。 要说明一个命题是一个假命题,通常可以举出一个例子,使它具备命题的条件,而不具有命题的结论。这种例子称为反例。

二、三角形内角和定理:三角形三个内角的和等于180度。1、证明三角形内角和定理的思路是将原三角形中的三个角凑到一起组成一个平角。一般需要作辅助线。既可以作平行线,也可以作一个角等于三角形中的一个角。2、三角形的外角与它相邻的内角是互为补角。

三、三角形的外角与它不相邻的内角关系是:(1)三角形的一个外角等于和它不相邻的两个内角的和。(2)三角形的一个外角大于任何一个和它不相邻的内角。

四、证明一个命题是真命题的基本步骤是:(1)根据题意,画出图形。(2)根据条件、结论,结合图形,写出已知、求证。(3)经过分析,找出由已知推出求证的途径,写出证明过程。 在证明时需注意:(1)在一般情况下,分析的过程不要求写出来。(2)证明中的每一步推理都要有根据。 如果两条直线都和第三条直线平行,那么这两条直线也相互平行。30.所对的直角边是斜边的一半。斜边上的高是斜边的一半。

数学学习技巧 篇4

一、主动预习

预习的目的是主动获取新知识的过程,有助于调动学习积极主动性,新知识在未讲解之前,认真阅读教材,养成主动预习的习惯,是获得数学知识的重要手段。

因此,要注意培养自学能力,学会看书。如自学例题时,要弄清例题讲的什么内容,告诉了哪些条件,求什么,书上怎么解答的,为什么要这样解答,还有没有新的解法,解题步骤是怎样的。

抓住这些重要问题,动脑思考,步步深入,学会运用已有的知识去独立探究新的知识。

二、主动思考

很多同学在听课的过程中,只是简简单单的听,不能主动思考,这样遇到实际问题时,会无从下手,不知如何应用所学的知识去解答问题。

主要原因还是听课过程中不思考惹的祸。除了我们跟着老师的思路走,还要多想想为什么要这么定义,这样解题的好处是什么,这样主动去想,不仅能让我们更加认真的听课,也能激发对某些知识的兴趣,更有助于学习。

靠着老师的引导,去思考解题的思路;答案真的不重要;重要的是方法!