首页 > 实用范文 > 范文大全 > 三角函数公式最新5篇正文

《三角函数公式最新5篇》

时间:

三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的`联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在,下面是学习方法网为大家整理的三角函数公式大全:下面是整理的三角函数公式最新5篇,希望能够帮助到大家。

降幂公式 篇1

sin^2(α)=(1-cos(2α))/2=versin(2α)/2

cos^2(α)=(1+cos(2α))/2=covers(2α)/2

tan^2(α)=(1-cos(2α))/(1+cos(2α))

倍角公式推导 篇2

sin3a

=sin(2a+a)

=sin2acosa+cos2asina

辅助角公式

Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

sint=B/(A^2+B^2)^(1/2)

cost=A/(A^2+B^2)^(1/2)

tantwww.=B/A

Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B

和差化积 篇3

sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]

sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]

cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]

cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]

tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)

tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)

积化和差 篇4

sinαsinβ = [cos(α-β)-cos(α+β)] /2

cosαcosβ = [cos(α+β)+cos(α-β)]/2

sinαcosβ = [sin(α+β)+sin(α-β)]/2

cosαsinβ = [sin(α+β)-sin(α-β)]/2

倍角公式 篇5

sin3α=4sinα�sin(π/3+α)sin(π/3-α)

cos3α=4cosα�cos(π/3+α)cos(π/3-α)

tan3a = tan a � tan(π/3+a)� tan(π/3-a)