首页 > 实用范文 > 范文大全 > 四年级常考的奥数题:鸡兔同笼应用题附答案优秀2篇正文

《四年级常考的奥数题:鸡兔同笼应用题附答案优秀2篇》

时间:

日子象念珠一样,一天接着一天滑过,串成周,为大家精心整理了四年级常考的奥数题:鸡兔同笼应用题附答案优秀2篇,希望大家可以喜欢并分享出去。

小学数学奥数题【例 篇1

1、红铅笔每支0.19元,蓝铅笔每支0.11元,两种铅笔共买了16支,花了2.80元。问红、蓝铅笔各买几支?

解:以“分”作为钱的单位。我们设想,一种“鸡”有11只脚,一种“兔子”有19只脚,它们共有16个头,280只脚。

现在已经把买铅笔问题,转化成“鸡兔同笼”问题了。利用上面算兔数公式,就有

蓝笔数=(19�16-280)�(19-11)

=24�8

=3(支)。

红笔数=16-3=13(支)。

答:买了13支红铅笔和3支蓝铅笔。

对于这类问题的计算,常常可以利用已知脚数的'特殊性。例2中的“脚数”19与11之和是30.我们也可以设想16只中,8只是“兔子”,8只是“鸡”,根据这一设想,脚数是

8�(11+19)=240.

比280少40.

40�(19-11)=5.

就知道设想中的8只“鸡”应少5只,也就是“鸡”(蓝铅笔)数是3.

30�8比19�16或11�16要容易计算些。利用已知数的特殊性,靠心算来完成计算。

实际上,可以任意设想一个方便的兔数或鸡数。例如,设想16只中,“兔数”为10,“鸡数”为6,就有脚数

19�10+11�6=256.

比280少24.

24�(19-11)=3,

就知道设想6只“鸡”,要少3只。

要使设想的数,能给计算带来方便,常常取决于你的心算本领。

小学数学奥数题【例 篇2

1、有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只?

解:我们设想,每只鸡都是“金鸡独立”,一只脚站着;而每只兔子都用两条后腿,像人一样用两只脚站着。现在,地面上出现脚的总数的一半,�也就是

244�2=122(只)。

在122这个数里,鸡的头数算了一次,兔子的头数相当于算了两次。因此从122减去总头数88,剩下的就是兔子头数

122-88=34,

有34只兔子。当然鸡就有54只。

答:有兔子34只,鸡54只。

上面的计算,可以归结为下面算式:

总脚数�2-总头数=兔子数。

上面的解法是《孙子算经》中记载的。做一次除法和一次减法,马上能求出兔子数,多简单!能够这样算,主要利用了兔和鸡的脚数分别是4和2,4又是2的2倍。可是,当其他问题转化成这类问题时,“脚数”就不一定是4和2,上面的计算方法就行不通。因此,我们对这类问题给出一种一般解法。

还说例1.

如果设想88只都是兔子,那么就有4�88只脚,比244只脚多了

88�4-244=108(只)。

每只鸡比兔子少(4-2)只脚,所以共有鸡

(88�4-244)�(4-2)= 54(只)。

说明我们设想的88只“兔子”中,有54只不是兔子。而是鸡。因此可以列出公式

鸡数=(兔脚数�总头数-总脚数)�(兔脚数-鸡脚数)。

当然,我们也可以设想88只都是“鸡”,那么共有脚2�88=176(只),比244只脚少了

244-176=68(只)。

每只鸡比每只兔子少(4-2)只脚,

68�2=34(只)。

说明设想中的“鸡”,有34只是兔子,也可以列出公式

兔数=(总脚数-鸡脚数�总头数)�(兔脚数-鸡脚数)。

上面两个公式不必都用,用其中一个算出兔数或鸡数,再用总头数去减,就知道另一个数。

假设全是鸡,或者全是兔,通常用这样的思路求解,有人称为“假设法”。