首页 > 实用范文 > 范文大全 > 最新高三物理知识点【最新7篇】正文

《最新高三物理知识点【最新7篇】》

时间:

物理学是一门实验科学,也是一门崇尚理性、重视逻辑推理的科学。物理学充分用数学作为自己的工作语言,它是当今最精密的一门自然科学学科。下面是小编辛苦为大家带来的最新高三物理知识点【最新7篇】,如果对您有一些参考与帮助,请分享给最好的朋友。

高三物理知识点梳理 篇1

一、功的定义

是力沿力的方向上的位移。功是与每一个力相对应的,每一个施加于物体上的力都有对物体做功的可能,功代表一种力的作用效果,最终物体所承受的功应是各力做功的和。由于功等于力和位移两个矢量相乘,根据向量四则运算规则,功是标量,各力所做的功实际上都排在与位移的平行线上,有正有负,按数轴叠加得出总功,即合外力对物体所做的功。

二、功的单向性

不同于力的成对出现,功是不对称的。

三、力与位移的夹角

物体实际受力方向经常与位移方向构成一个夹角θ,无论是力线向位移线转还是位移线向力线转都是旋转θ角,之间的关系都是cosθ,当θ=0,cosθ=+1,力对物体做正功。当θ=π,cosθ=-1,力对物体做负功。当θ=π/2时,cosθ=0,力对物体不做功。但合外力必然与位移方向相同。

四、两种机械能,动能和势能,它们的概念

五、能量研究的'体系的概念

能量是在体系内进行研究的,只有在一个特定完整的体系中才能应用机械能守恒定理,既然是体系,可以是两个以上的物体。

六、能量研究的适用范围

优势是可以解决一些变力情况,缺点是不能解决有关加速度的研究。

七、搞清功和能的关系。确定什么时候用机械能守恒,什么时候用动能定理。

1功和能的关系

能量的转换通过做功来实现,换句话说,做功产生能量(做正功),或做功损失能量(做负功),功有三种含义:一是等于物体单一能量的改变,如动能增加或减少。二是可以看作不同能量转换的传递中介物,如增加或减少的动能通过做功可以转化为势能,从而实现机械能守恒。三是可以表示出机械能以外的能量,从而可以传递给电能、热能、光能等。

2动能定理

应该这样描述:合外力对物体所做的功等于该物体动能的变化。这里有以下两个关键问题:

A必须是合外力做功,即所有力对物体做功的总和,也只有用合外力,动能定理才能成立。单个力可以对物体做功,但无法计算其贡献的动能。由于合外力与位移方向永远相同,所以没有cosθ。

B因为功是以研究对象为范围,与前面相同,即只针对一个物体,当两个质量分别为m1、m2的物体叠加时,需要像前面一样根据需要进行整体和隔离,必须分开讨论。

3机械能守恒定律

机械能守恒应该这样描述,体系内各物体运动前总机械能等于运动后总机械能。机械能等于动能加势能。这里同样有两个关键问题,

A能量的研究范围是体系,既然称为体系,应包括所有参与的物体(包括地球),以及整个的变化过程。既然所有物体都参与研究,因为能量是标量,多个物体的能量就可以进行累加,形成系统内总动能和总势能,进而形成总机械能。

B这里不采用动能和势能转化的公式描述是因为它只适用于一个物体,没有充分发挥体系的优势,由于动能定理解决多个物体问题比较复杂,因此这个问题显得比较重要。

高三物理知识点梳理 篇2

1、牛顿第一定律(惯性定律):一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种做状态为止。

a.只有当物体所受合外力为零时,物体才能处于静止或匀速直线运动状态。

b.力是该变物体速度的原因。

c.力是改变物体运动状态的原因(物体的速度不变,其运动状态就不变)

d力是产生加速度的原因。

2、惯性:物体保持匀速直线运动或静止状态的性质叫惯性。

a.一切物体都有惯性。

b.惯性的大小由物体的质量决定

c.惯性是描述物体运动状态改变难易的物理量。

3、牛顿第二定律:物体的加速度跟所受的合外力成正比,跟物体的质量成反比,加速度的方向跟物体所受合外力的方向相同。

a.数学表达式:a=F合/m。

b.加速度随力的产生而产生、变化而变化、消失而消失。

c.当物体所受力的方向和运动方向一致时,物体加速。当物体所受力的方向和运动方向相反时,物体减速。

d.力的单位牛顿的定义:使质量为1kg的物体产生1m/s2加速度的力,叫1N。

4、牛顿第三定律:物体间的作用力和反作用总是等大、反向、作用在同一条直线上的。

a.作用力和反作用力同时产生、同时变化、同时消失。

b.作用力和反作用力与平衡力的根本区别是作用力和反作用力作用在两个相互作用的物体上,平衡力作用在同一物体上。

高三物理知识点归纳 篇3

1.超重现象

定义:物体对支持物的压力大于物体所受重力的情况叫超重现象。

产生原因:物体具有竖直向上的加速度。

2.失重现象

定义:物体对支持物的压力(或对悬挂物的拉力)小于物体所受重力的情况叫失重现象。

产生原因:物体具有竖直向下的加速度。

3.完全失重现象

定义:物体对支持物的压力等于零的情况即与支持物或悬挂物虽然接触但无相互作用。

产生原因:物体竖直向下的加速度就是重力加速度,即只受重力作用,不会再与支持物或悬挂物发生作用。是否发生完全失重现象与运动方向无关,只要物体竖直向下的加速度等于重力加速度即可。

【超重和失重就是物体的重量增加和减小吗?】

答:不是。

只有在平衡状态下,才能用弹簧秤测出物体的重力,因为此时弹簧秤对物体的支持力(或拉力)的大小恰等于它的重力。假若系统在竖直方向有加速度,那么弹簧秤的示数就不等于物体的重力了,大于mg时叫“超重”小于mg叫“失重”(等于零时叫“完全失重”)。

注意:物体处于“超重”或“失重”状态,地球作用于物体的重力始终存在,大小也无变化。发生“超重”或“失重”现象与物体的速度V方向无关,只取决于物体加速度的方向。在“完全失重”(a=g)的状态,平常一切由重力产生的物理现象都会完全消失,比如单摆停摆、浸在水中的物体不受浮力等。

另外,“超重”或“失重”状态还可以从牛顿第二定律的独立性(是指作用于物体上的每一个力各自产生对应的加速度)上来解释。上述状态中物体的重力始终存在,大小也无变化,自然其产生的加速度(通常称为重力加速度g)是不发生变化的,自然重力不变。

高三物理知识点归纳 篇4

1.牛顿第一定律(惯性定律):一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种做状态为止。

a.只有当物体所受合外力为零时,物体才能处于静止或匀速直线运动状态。

b.力是该变物体速度的原因。

c.力是改变物体运动状态的原因(物体的速度不变,其运动状态就不变)

d力是产生加速度的原因。

2.惯性:物体保持匀速直线运动或静止状态的性质叫惯性。

a.一切物体都有惯性。

b.惯性的大小由物体的质量决定。

c.惯性是描述物体运动状态改变难易的物理量。

3.牛顿第二定律:物体的加速度跟所受的合外力成正比,跟物体的质量成反比,加速度的方向跟物体所受合外力的方向相同。

a.数学表达式:a=F合/m。

b.加速度随力的产生而产生、变化而变化、消失而消失。

c.当物体所受力的方向和运动方向一致时,物体加速。当物体所受力的方向和运动方向相反时,物体减速。

d.力的单位牛顿的定义:使质量为1kg的物体产生1m/s2加速度的力,叫1N。

4.牛顿第三定律:物体间的作用力和反作用总是等大、反向、作用在同一条直线上的。

a.作用力和反作用力同时产生、同时变化、同时消失。

b.作用力和反作用力与平衡力的根本区别是作用力和反作用力作用在两个相互作用的物体上,平衡力作用在同一物体上。

高三物理必备知识点归纳 篇5

(1)粒子散射实验

1909年,卢瑟福及助手盖革和马斯顿完成的。

现象:

a.绝大多数粒子穿过金箔后,仍沿原来方向运动,不发生偏转。

b.有少数粒子发生较大角度的偏转。

c.有极少数粒子的偏转角超过了90°,有的几乎达到180°,即被反向弹回。

(2)原子的核式结构模型

由于粒子的质量是电子质量的七千多倍,所以电子不会使粒子运动方向发生明显的改变,只有原子中的正电荷才有可能对粒子的运动产生明显的影响。

如果正电荷在原子中的分布,像汤姆生模型那模均匀分布,穿过金箔的粒了所受正电荷的作用力在各方向平衡,粒了运动将不发生明显改变。散射实验现象证明,原子中正电荷不是均匀分布在原子中的。

1911年,卢瑟福通过对粒子散射实验的分析计算提出原子核式结构模型:在原子中心存在一个很小的核,称为原子核,原子核集中了原子所有正电荷和几乎全部的质量,带负电荷的电子在核外空间绕核旋转。

高三物理知识点梳理 篇6

一、分子动理论

1、物体是由大量分子组成的

(1)分子模型:主要有两种模型,固体与液体分子通常用球体模型,气体分子通常用立方体模型。

(2)分()子的大小

①分子直径:数量级是10-10m;

②分子质量:数量级是10-26kg;

③测量方法:油膜法。

(3)阿伏加德罗常数

1.mol任何物质所含有的粒子数,NA=6.02×1023mol-1

2、分子热运动

分子永不停息的无规则运动。

(1)扩散现象

相互接触的不同物质彼此进入对方的现象。温度越高,扩散越快,可在固体、液体、气体中进行。

(2)布朗运动

悬浮在液体(或气体)中的微粒的无规则运动,微粒越小,温度越高,布朗运动越显著。

3、分子力

分子间同时存在引力和斥力,且都随分子间距离的增大而减小,随分子间距离的减小而增大,但总是斥力变化得较快。

二、内能

1、分子平均动能

(1)所有分子动能的平均值。

(2)温度是分子平均动能的标志。

2、分子势能

由分子间相对位置决定的能,在宏观上分子势能与物体体积有关,在微观上与分子间的距离有关。

3、物体的内能

(1)内能:物体中所有分子的热运动动能与分子势能的总和。

(2)决定因素:温度、体积和物质的量。

三、温度

1、意义:宏观上表示物体的冷热程度(微观上标志物体中分子平均动能的大小)。

2、两种温标

(1)摄氏温标t:单位℃,在1个标准大气压下,水的冰点作为0℃,沸点作为100℃,在0℃~100℃之间等分100份,每一份表示1℃。

(2)热力学温标T:单位K,把-273.15℃作为0K.

(3)就每一度表示的冷热差别来说,两种温度是相同的,即ΔT=Δt.只是零值的起点不同,所以二者关系式为T=t+273.15.

(4)绝对零度(0K),是低温极限,只能接近不能达到,所以热力学温度无负值。

高三物理知识点归纳 篇7

1、分子动理论

(1)物质是由大量分子组成的分子直径的数量级一般是10-10m。

(2)分子永不停息地做无规则热运动。

①扩散现象:不同的物质互相接触时,可以彼此进入对方中去。温度越高,扩散越快。②布朗运动:在显微镜下看到的悬浮在液体(或气体)中微小颗粒的无规则运动,是液体分子对微小颗粒撞击作用的不平衡造成的,是液体分子永不停息地无规则运动的宏观反映。颗粒越小,布朗运动越明显;温度越高,布朗运动越明显。

(3)分子间存在着相互作用力

分子间同时存在着引力和斥力,引力和斥力都随分子间距离增大而减小,但斥力的变化比引力的变化快,实际表现出来的是引力和斥力的合力。

2、物体的内能

(1)分子动能:做热运动的分子具有动能,在热现象的研究中,单个分子的动能是无研究意义的,重要的是分子热运动的平均动能。温度是物体分子热运动的平均动能的标志。

(2)分子势能:分子间具有由它们的相对位置决定的势能,叫做分子势能。分子势能随着物体的体积变化而变化。分子间的作用表现为引力时,分子势能随着分子间的距离增大而增大。分子间的作用表现为斥力时,分子势能随着分子间距离增大而减小。对实际气体来说,体积增大,分子势能增加;体积缩小,分子势能减小。

(3)物体的内能:物体里所有的分子的动能和势能的总和叫做物体的内能。任何物体都有内能,物体的内能跟物体的温度和体积有关。

(4)物体的内能和机械能有着本质的区别。物体具有内能的同时可以具有机械能,也可以不具有机械能。

3、改变内能的两种方式

(1)做功:其本质是其他形式的能和内能之间的相互转化。(2)热传递:其本质是物体间内能的转移。

(3)做功和热传递在改变物体的内能上是等效的,但有本质的区别。

4、★能量转化和守恒定律

5★。热力学第一定律

(1)内容:物体内能的增量(ΔU)等于外界对物体做的功(W)和物体吸收的热量(Q)的总和。

(2)表达式:W+Q=ΔU

(3)符号法则:外界对物体做功,W取正值,物体对外界做功,W取负值;物体吸收热量,Q取正值,物体放出热量,Q取负值;物体内能增加,ΔU取正值,物体内能减少,ΔU取负值。

6、热力学第二定律

(1)热传导的方向性

热传递的过程是有方向性的,热量会自发地从高温物体传给低温物体,而不会自发地从低温物体传给高温物体。

(2)热力学第二定律的两种常见表述

①不可能使热量由低温物体传递到高温物体,而不引起其他变化。

②不可能从单一热源吸收热量并把它全部用来做功,而不引起其他变化。

(3)永动机不可能制成

①第一类永动机不可能制成:不消耗任何能量,却可以源源不断地对外做功,这种机器被称为第一类永动机,这种永动机是不可能制造成的,它违背了能量守恒定律。

②第二类永动机不可能制成:没有冷凝器,只有单一热源,并从这个单一热源吸收的热量,可以全部用来做功,而不引起其他变化的热机叫做第二类永动机。第二类永动机不可能制成,它虽然不违背能量守恒定律,但违背了热力学第二定律。

7、气体的状态参量

(1)温度:宏观上表示物体的冷热程度,微观上是分子平均动能的标志。两种温标的换算关系:T=(t+273)K。

绝对零度为-273.15℃,它是低温的极限,只能接近不能达到。

(2)气体的体积:气体的体积不是气体分子自身体积的总和,而是指大量气体分子所能达到的整个空间的体积。封闭在容器内的气体,其体积等于容器的容积。

(3)气体的压强:气体作用在器壁单位面积上的压力。数值上等于单位时间内器壁单位面积上受到气体分子的总冲量。

①产生原因:大量气体分子无规则运动碰撞器壁,形成对器壁各处均匀的持续的压力。

②决定因素:一定气体的压强大小,微观上决定于分子的运动速率和分子密度;宏观上决定于气体的温度和体积。

(4)对于一定质量的理想气体,PV/T=恒量

8、气体分子运动的特点

(1)气体分子间有很大的空隙。气体分子之间的距离大约是分子直径的10倍。

(2)气体分子之间的作用力十分微弱。在处理某些问题时,可以把气体分子看作没有相互作用的质点。

(3)气体分子运动的速率很大,常温下大多数气体分子的速率都达到数百米每秒。离这个数值越远,分子数越少,表现出“中间多,两头少”的统计分布规律。