首页 > 实用范文 > 毕业论文 > 论文范文 > 数学论文(9篇)正文

《数学论文(9篇)》

时间:

在现实的学习、工作中,大家总少不了接触论文吧,论文写作的过程是人们获得直接经验的过程。还是对论文一筹莫展吗?这次帅气的小编为您整理了数学论文(9篇),希望能够帮助到大家。

大学数学论文 篇1

随着科技的进步和社会的发展,数学这一基础学科已与其他学科相结合,且应用愈来愈广,已渗透到生产和生活的各个方面。我国从1992年开始举办大学生数学建模竞赛。近年来,大学生数学建模竞赛迅猛发展,为高等数学的应用型教学指引了方向,同时也激发了大学生的创新思维,锻炼了大学生的实践能力,受到了社会各界人士的关注和好评。

一、数学建模和大学生数学建模竞赛

何为数学建模?有人认为,数学模型即以现实世界为目的而做的抽象、简化的数学结构;也有人认为,数学模型就是将现实事物通过数学语言来转化为常见的数学体系。事实上,数学建模是运用数学知识从实际课题中抽象、提炼出数学模型的过程,主要方法是通过合理假设、引进自变量、借助各种数学工具实现对现实事物的数字化转变,进而描述或解决实际问题。

那么,受广大高校师生青睐的大学生数学建模竞赛又是什么呢?数学建模竞赛是全国大学生参与规模最大的课外科技活动,从一个侧面反映一个学校学生的综合能力,为学生提供了展示才华的舞台。大学生数学建模竞赛具有一定的开放性和应用性,同时兼具一定的综合性和挑战性。成果以一篇论文的形式上交,要求必须包含完整的建模步骤,包括问题的提出、模型的假设、变量的引入、建模过程、模型求解与分析、模型检验及应用。

二、大学生数学建模竞赛与课程教学培训中存在的问题

通过对山西工商学院历年来参加大学生数学建模竞赛的选手及其相关指导老师进行调查、走访,并考察其他高校的情况,笔者发现,相比往年的成绩,各大高校在近几年的竞赛成绩上有了飞速的提高,在学校的组织和鼓励下,参赛人数逐年递增,数学建模教学每年都在不断改革,同时除了参加竞赛,还在课堂外实践了数学与生产实际的结合过程。然而,通过参阅文献和访谈笔录资料,笔者也总结了近几年来大学生数学建模竞赛及竞赛培训教学中存在的相关问题。

第一,参赛学生的学习能力和综合素质有待提高。在思想品质方面,数学建模的参赛过程极其艰苦,需要学生具备意志力、求知欲、团队意识。我们的队员往往在此三方面表现一般。同时,在数学能力方面,学生的数学基础知识储备不足,软件处理的方法单一,实际问题转化为数学结构的创新思维并不能良好地展现。

第二,根据上述学生所表现出的问题不难发现,教师团队在数学建模培训教学过程中,教学观念滞后,创新能力有待提高,教学模式亟待突破,数学建模的教师团队应当做好学生的表率,要吃苦耐劳,要通力合作。

第三,正因为上述问题,数学建模培训也出现了弊端。培训方式单一,培训只讲求深入而不探索广度,培训时间安排不合理,培训的内容与建模竞赛不对接。

第四,经过调查发现,部分高校对组织数学建模竞赛的前期工作没有给予足够的重视,少数高校在竞赛的组织和开展中急功近利。另外,大多数高校在数学建模教学教育的过程中缺乏完整的制度和保障体系。

三、大学生数学建模课程教学培训策略

大学生建模竞赛除了能为部分大学生及其指导老师和高校获得荣誉外,更能培养大学生综合运用所学专业的意识,提升大学生的创新思维和抽象思维,以及自主学习能力和团队协作能力。因此,在数学建模课程教学培训中,应做好如下工作。

(一)教师层面

首先,数学建模课程教学培训应当以创新为起点。建模不是凭空而来的,教师要引导学生从生活实际中抽象出数学模型,真正在选题上下功夫,培养学生的创新思维。

其次,数学建模课程教学培训应当以数学知识体系为基础。教师不能仅仅将自己的专业知识传授给学生,数学博大精深,自身要不断涉猎新知识,不仅要注重数学学习的深度,更应当拓展数学学习的广度,为数学建模竞赛打下坚实的基础。

最后,数学建模课程教学培训应当回归实践。建模的目的是为了解决实际问题,无论多么复杂的数学模型,最后都要落到解决后的结果中。因此,教师既要教会学生建模,又要教会学生将建模的方法真正应用于解决实际问题,做到学以致用。

(二)学校层面

首先,制定系统的数学建模课程体系,包括合理的学时、学制,保证学生的学习,不能在竞赛前急抓一批学生现学现用。

其次,学校要做好数学建模竞赛的宣传和指导工作,尽量保证每位学生都能于在校期间参加比赛,获得锻炼。

最后,学校要时刻以学生为主,不能一味地为了获奖而出现教师代替学生的现象。

参考文献

[1]刘建州。实用数学建模教程[M]。武汉:武汉理工大学出版社,2004.

[2]李尚志。数学建模竞赛教程[M]。南京:江苏教育出版社,1996.

[3]赫孝良。数学建模竞赛赛题简析与论文点评[M]。西安:西安交通大学出版社,2002.

数学论文 篇2

摘要:

大学教育中非常重要的一门基础学科就是数学,学好数学有利于大学生培养逻辑思维能力,提高创新意识。在大学数学教学中渗透数学文化,能够让大学生对于数学知识有更加深刻的理解,激发大学生探究数学知识的兴趣,在学习中发现数学的乐趣,养成用严谨的态度看待周边的事物,为大学生今后步入社会做好准备。

关键词:大学数学;教学;渗透;数学文化

一、数学文化的具体含义

数学文化是指数学的思想、精神、观点、语言以及它们的形成和发展,还包含了数学家、数学史、数学教育和数学发展中的数学与社会的联系,数学与各种文化的关系等。我国数学文化最早在孙小礼和邓东皋等人共同编写的《数学与文化》中被提及,这本书浓缩了许多数学名家的相关理论学说,记录了从自然辩证法角度对数学文化的思考。数学不单单是一种符号或者是一种真理,其内涵包含了用数学的观点来观察周边的现实,构造数学模型,学习数学语言、图表和符合的表示,进行数学的沟通。数学文化可以在具体的数学理念和数学思想、数学方法中揭示内涵。数学从本质上与文学的思考方式是共通的,数学文化中的逻辑思维、形象思维、抽象思维等在文学思考方式中也有体现。但是数学文化与其他文化相比较,也有其本身的独特性。数学在历史发展的长河中不断改变和融合,现在已经成为世界上的一种通用语言,不再受到不同国家文化、语言的束缚,受到了各国人民的推崇和发展,数学文化利用科学的方式对人类生活中的其他文化的本质进行了深刻的揭示,是其他文化发展的基础。

二、教学中渗透数学文化的意义

大学数学中综合了物理、计算机、电子等知识,教学课程包含了高等数学、线性代数、概率论与数理统计等,大学开展数学课程符合时代的发展潮流。在大学数学教学中渗透数学文化,能够使学生在对数学进行系统化的学习之前,充分理解数学文化的内涵,发现数学文化与其他各种文化间的紧密联系,使大学生能够在数学教学的学习中提高数学学习能力,发展独立发现问题和解决问题的能力,开发大脑的潜能,树立正确的数学学习观念,通过学生深入了解数学的内容,从不同的角度对数学人文、科学方面等知识进行分析和理解。对于增强学生全方面的能力有着重要的意义。

三、加强数学文化渗透的方式

1、加强数学文化教学

大学数学教师应当加强对学生的数学文化教学,对于学生的数学解题思维进行培养,在数学课程教学中逐渐渗透数学文化的魅力,将数学文化具体融入教师的教学中,增强学生对于数学文化的了解,激发学生学习数学的积极性,提高学生发现问题、解决问题的能力。在大学数学教学实践中,教师也应当加强自身对于数学文化的理解,转变传统的教学方式,在数学教学中不仅要重视对学生数学知识的教学,还要重视起对学生数学思维能力的教学,结合学生的实际数学学习情况,由浅入深对学生灌输数学知识,将数学文化与数学教学系统化的整合,逐步提升学生的数学学习和解题的技能,鼓励学生之间相互学习、相互竞争,在合作和竞争中学习数学知识、锻炼数学技能,发挥学生学习的主观能动性,改变过去教师讲学生听的教学模式,使学生能够主动学、主动问,从而使学生的数学成绩能够不断提升。

2、丰富教师教学方式

大学数学教师应当不断丰富教学方式,利用多种教学手段,使学生能够更好地接受数学文化,学习数学知识。数学作为理科学科相对于文科学科学习起来更难也更枯燥,许多数学公式和定义比较复杂,不利于学生的记忆和理解,因此大学数学教师可以充分发挥数学文化教学的优势,增加数学教学课堂的趣味性,通过多媒体为学生播放一些和课本内容相关的视频,加深学生的数学学习记忆,在数学知识的教学前可以先用数学文化当作铺垫,吸引学生的注意力,使数学的学习不再枯燥,为学生的数学学习营造出轻松愉快的氛围。例如,某大学数学教学中,教师利用多媒体为学生播放了线性代数的相关图片,为学生解释了矩阵的概念、基本运算、矩阵的初等变换与矩阵的秩、逆矩阵和线性方程组解的判定,结合学生的实际生活进行举例,“A城市是所有大学学生毕业后向往的城市,而B城市则因为经济落后成为大学学生毕业后都想走出去的城市,假设B城市中每年有35%的人来到了A城市,而A城市每年仅有15%的人来到B城市,A城市的人口总共有1000万,B城市的人口有600万,两个城市的人口总数不变的情况下,5年后A城市和B城市的人口分别有多少,在很多年以后,两个城市人口的分布是否会出现稳定的一个状态?”该案例激发了学生对于线性代数学习的积极性,有效地提高了学生在数学课堂上学习的效率。

3、增加数学文化课程

各大学在数学课程设计上可以结合学生的实际情况,适当增加数学文化课程,加强学生对于数学文化内涵的学习,使学生能够形成系统化的数学学习理论体系。例如,某大学在结合学生实际课程情况的基础上,增加了数学历史的课程,使学生了解了古代埃及数学的成就主要来源于纸草书、《九章算术》中的“阳马”指的是棱锥、射影几何产生于文艺复兴时期的绘画艺术、“非欧几何之父”的数学家是罗巴切夫斯基、最早使用“函数”术语的数学家是莱布尼茨、积分学早于微分学出现等等相关的数学历史知识,促使学生能够完善自身的数学学习,详细了解了数学相关历史和发展情况,拓展了学生的知识层面,加深了学生对于数学的理解,使学生在大学数学课堂上能够更好地配合教师的教学。

参考文献:

[1]陈朝坚。大学数学教学中渗透数学文化的途径[J]。开封教育学院学报,2014.

[2]陈朝坚。在大学数学教学中渗透数学文化的思考[J]。湖北成人教育学院学报,2013.

[3]陈梅。浅谈数学文化在大学数学教学中的渗透[J]。长春理工大学学报,2011.

大学数学论文 篇3

论文题目:大学代数知识在互联网络中的应用

摘要:代数方面的知识是数学工作者的必备基础。本文通过讨论大学代数知识在互联网络对称性研究中的应用,提出大学数学专业学生检验自己对已学代数知识的掌握程度的一种新思路,即思考一些比较前沿的数学问题。

关键词:代数;对称;自同构

一、引言与基本概念

《高等代数》和《近世代数》是大学数学专业有关代数方面的两门重要课程。前者是大学数学各个专业最重要的主干基础课程之一,后者既是对前者的继续和深入,也是代数方面研究生课程的重要先修课程之一。这两门课程概念众多,内容高度抽象,是数学专业学生公认的难学课程。甚至,很多学生修完《高等代数》之后,就放弃了继续学习《近世代数》。即使对于那些坚持认真学完这两门课程的学生来讲,也未必能做到“不仅知其然,还知其所以然”,而要做到“知其所以然,还要知其不得不然”就更是难上加难了。众所周知,学习数学,不仅逻辑上要搞懂,还要做到真正掌握,学以致用,也就是“学到手”。当然,做课后习题和考试是检验是否学会的一个重要手段。然而,利用所学知识独立地去解决一些比较前沿的数学问题,也是检验我们对于知识理解和掌握程度的一个重要方法。这样做,不仅有助于巩固和加深对所学知识的理解,也有助于培养学生的创新意识和自学能力。笔者结合自己所从事的教学和科研工作,在这方面做了一些尝试。

互连网络的拓扑结构可以用图来表示。为了提高网络性能,考虑到高对称性图具有许多优良的性质,数学与计算机科学工作者通常建议使用具有高对称性的图来做互联网络的模型。事实上,许多著名的网络,如:超立方体网络、折叠立方体网络、交错群图网络等都具有很强的对称性。而且这些网络的构造都是基于一个重要的代数结构即“群”。它们的对称性也是通过其自同构群在其各个对象(如:顶点集合、边集合等)上作用的传递性来描述的。

下面介绍一些相关的概念。一个图G是一个二元组(V,E),其中V是一个有限集合,E为由V的若干二元子集组成的集合。称V为G的顶点集合,E为G的边集合。E中的每个二元子集{u,v}称为是图G的连接顶点u与v的一条边。图G的一个自同构f是G的顶点集合V上的一个一一映射(即置换),使得{u,v}为G的边当且仅当{uf,vf}也为G的边。图G的全体自同构依映射的合成构成一个群,称为G的全自同构群,记作Aut(G)。图G称为是顶点对称的,如对于G的任意两个顶点u与v,存在G的自同构f使得uf=v。图G称为是边对称的,如对于G的任意两条边{u,v}和{x,y},存在G的自同构f使得{uf,vf}={x,y}。

设n为正整数,令Z2n为有限域Z2={0,1}上的n维线性空间。由《近世代数》知识可知,Z2n的加法群是一个初等交换2群。在Z2n中取出如下n个单位向量:

e1=(1,0,…,0),e2=(0,1,0,…,0),en=(0,…,0,1)。

●n维超立方体网络(记作Qn)是一个以Z2n为顶点集合的图,对于Qn的任意两个顶点u和v,{u,v}是Qn的一条边当且仅当v-u=ei,其中1≤i≤n。

●n维折叠立方体网络(记作FQn)是一个以Z2n为顶点集合的图,对于Qn的任意两个顶点u和v,{u,v}是Qn的一条边当且仅当v-u=ei(1≤i≤n)或者v-u=e1+…+en。

●n维交错群图网络(记作AGn)是一个以n级交错群An为顶点集合的图,对于AGn的任意两个顶点u和v,{u,v}是AGn的一条边当且仅当vu-1=ai或ai-1,这里3≤i≤n,ai=(1,2,i)为一个3轮换。

一个自然的问题是:这三类网络是否是顶点对称的?是否边对称的?但值得我们注意的是,这些问题都可以利用大学所学的代数知识得到完全解决。

二、三类网络的对称性

先来看n维超立方体网络的对称性。

定理一:n维超立方体网络Qn是顶点和边对称的。

证明:对于Z2n中的任一向量x=(x1,…,xn),如下定义V(Qn)=Z2n上面的一个映射:f(x):u→u+x,u取遍V(Qn)中所有元素。容易验证f(x)是一个1-1映射。(注:这个映射在《高等代数》中已学过,即所谓的平移映射。)而{u,v}是Qn的一条边,当且仅当v-u=ei(1≤i≤n),当且仅当vf(x)-uf(x)=ei(1≤i≤n),当且仅当{v(fx),u(fx)}是Qn的一条边。所以,f(x)也是Qn的一个自同构。这样,任取V(Qn)中两个顶点u和v,则uf(v-u)=v。从而说明Qn是顶点对称的。

下面证明Qn是边对称的。只需证明:对于Qn的任一条边{u,v},都存在Qn的自同构g使得{ug,vg}={0,e1},其中0为Z2n中的零向量。事实上,{uf(-u),vf(-u)}={0,v-u},其中v-u=ei(1≤i≤n)。显然,e1,…,ei-1,ei,ei+1,…,en和ei,…,ei-1,e1,ei+1,…,en是Z2n的两组基向量。由《高等代数》知识可知存在Z2n上的可逆线性变换t使得t对换e1和ei而不动其余向量。此时易见,若{a,b}是Qn的一条边,则a-b=ej(1≤j≤n)。若j=1,则at-bt=ei;若j=i,则at-bt=e1;若j≠1,i,则at-bt=ej;所以{at,bt}也是Qn的一条边。由定义可知,t是Qn的一个自同构。进一步,{0t,(v-u)t}={0,e1},即{uf(-u)t,vf(-u)t}={0,e1}。结论得证。

利用和定理一相似的办法,我们进一步可以得到如下定理。

定理二:n维折叠立方体网络FQn是顶点和边对称的。

最后,来决定n维交错群图网络的对称性。

定理三:n维交错群图网络AGn是顶点和边对称的。

证明:首先,来证明AGn是顶点对称的。给定An中的一个元素g,如下定义一个映射:R(g):x→xg,其中x取遍An中所有元素。容易验证R(g)为AGn顶点集合上上的一个1-1映射。(注:这个映射在有限群论中是一个十分重要的'映射,即所谓的右乘变换。)设{u,v}是AGn的一条边,则vu-1=ai或ai-1,这里1≤i≤n。易见,(vg)(ug)-1=vu-1。所以,{vR(g),uR(g)}是AGn的一条边。因此,R(g)是AGn的一个自同构。这样,对于AGn的任意两个顶点u和v,有uR(g)=v,这里g=u-1v。这说明AGn是顶点对称的。

下面来证明AGn是边对称的。只需证明对于AGn的任一条边{u,v},都存在AGn的自同构g使得{ug,vg}={e,a3},其中e为An中的单位元。给定对称群Sn中的一个元素g,如下定义一个映射:C(g):x→g-1xg,其中x取遍An中所有元素。由《近世代数》知识可知,交错群An是对称群Sn的正规子群。容易验证C(g)是AGn的顶点集合上的一个1-1映射。(注:这个映射其实就是把An中任一元素x变为它在g下的共轭。这也是有限群论中一个十分常用的映射。)令x=(1,2),y(j)=(3,j),j=3,…,n。下面证明C(x)和C(y(j))都是AGn的自通构。取{u,v}为AGn的任一条边,则vu-1=ai或ai-1。从而,vC(x)(u-1)C(x)=(x-1vx)(x-1u-1x)=x-(1vu-1)x=ai-1或ai。

因此,{uC(x),vC(x)}也是AGn的一条边。从而说明C(x)是AGn的自通构。同理,若j=i,有vC(y(j))(u-1)C(y(j))=a3-1或a3;若j≠i,则有vC(y(j))(u-1)C(y(j))=ai-1或ai。这说明{uC(y(j)),vC(y(j))}也是AGn的一条边,从而C(y(j))是AGn的自通构。现在,对于AGn的任一条边{u,v},令g=u-1,则{uR(g),vR(g)}={e,vu-1}={e,ai}或{e,ai-1}。若i=3,则{e,a3-1}C(x)={e,a3}。而若i≠3,则{e,ai}C(y(j))={e,a3}而{e,ai-1}C(y(j))={e,a3-1}。由此可见,总存在AGn的自同构g使得{ug,vg}={e,a3},结论得证。

至此,完全决定了这三类网络的对称性。不难看出,除了必要的图论概念外,我们的证明主要利用了《高等代数》和《近世代数》的知识。做为上述问题的继续和深入,有兴趣的同学还可以考虑以下问题:

1、这些网络是否具有更强的对称性?比如:弧对称性?距离对称性?

2、完全决定这些网络的全自同构群。

实际上,利用与上面证明相同的思路,结合对图的局部结构的分析,利用一些组合技巧,这些问题也可以得到解决。

三、小结

大学所学代数知识在数学领域中的许多学科、乃至其他领域都有重要的应用。笔者认为任课教师可以根据自己所熟悉的科研领域,选取一些与大学代数知识有紧密联系的前沿数学问题,引导一些学有余力的学生开展相关研究,甚至可以吸引一些本科生加入自己的课题组。当然,教师要给予必要的指导,比如讲解相关背景知识、必要的概念和方法等。指导学生从相对简单的问题入手,循序渐进,由易到难,逐步加深对代数学知识的系统理解,积累一些经验,为考虑进一步的问题奠定基础。

结束语

本文所提到的利用《高等代数》和《近世代数》的知识来研究网络的对称性就是笔者在教学工作中曾做过的一些尝试。在该方面,笔者指导完成了由三名大三学生参加的国家级大学生创新实验项目一项。这样以来,学生在学习经典数学知识的同时,也可以思考一些比较前沿的数学问题;学生在巩固已学知识的同时,也可以激发其学习兴趣,训练学生的逻辑思维,培养学生的创新思维,以及独立发现问题和解决问题的能力。

大学数学论文 篇4

作为工科类大学公共课的一种,高等数学在学生思维训练上的培养、训练数学思维等上发挥着重要的做用。进入新世纪后素质教育思想被人们越来越重视,如果还使用传统的教育教学方法,会让学生失去学习高等数学的积极性和兴趣。以现教育技术为基础的数学建模,在实际问题和理论之间架起沟通的桥梁。在实际教学的过程中,高数老师以课后实验着手,在高等数学教学中融入数学建模思想,使用数学建模解决实际问题。

一、高等数学教学的现状

(一)教学观念陈旧化

就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及逻辑思维能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。

(二)教学方法传统化

教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。

二、建模在高等数学教学中的作用

对学生的想象力、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。

高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。

三、将建模思想应用在高等数学教学中的具体措施

(一)在公式中使用建模思想

在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。

(二)讲解习题的时候使用数学模型的方式

课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。

(三)组织学生积极参加数学建模竞赛

一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。

四、结束语

高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。

数学论文 篇5

摘 要:

随着社会经济的发展和科技水平的提高,作为一门数学科学的高等数学,其应用已经渗透到社会的各个领域,不仅在传统的理工类方面发挥着重要作用,在文史类方面也起着开拓思维空间,打破常规,催生创新的作用。虽然高等数学拥有着巨大作用,但其在应用方面仍存在着一定的不足,迫切需要对此进行改革。本文针对这一问题从应用数学的价值入手,指出目前高等数学存在的不足,最后提出几点改革措施。

关键词:高等数学;应用数学;改革

正所谓,数学是一门语言,它是认识世界必不可少的一种媒介。高等数学,尤其是应用数学长久以来就受到各个领域的重视,广泛应用于科技、国防、生产管理等众多领域。把数学理论和实际应用相结合不仅是高等数学改革的要求,同时也是数学本身的发展需要。为此,我们需要对高等数学应用数学的改革做进一步的研究,不断推动数学改革。

一、高等数学应用数学概述

应用数学是由两个词组成,即应用和数学,一般说来,应用数学包括两个部分,一部分是与应用有关的数学,是传统数学的一支,我们也可以称之为可应用的数学;一部分是数学的应用,是指以数学为工具,探讨解决工程学、科学和社会学等方面的问题。高等数学应用数学的实践是个人打开求职大门的敲门砖,有利于做出明智的判断和理性思维的形成。任何一门科学都不能脱离现实而存在,正所谓认识来源于实践,作为一门应用性极强的高等学科,数学更是不例外。高等数学的应用极其广泛,目前,随着我国科技的进步和发展,更是拓宽了数学运用的应用领域,对现代社会的政治经济和文化都产生着不容忽视的重要作用。

二、高等数学应用数学的现状

高等数学应用数学逐渐受到学者的重视是在80年代中期,在这一时期,多个院校相继开设了应用数学的课程,且应用数学的师资队伍不断壮大,科研力量也逐渐增强,大量的高等数学应用数学的专著和教材也相继出版,但从整体上来看,高等数学的应用数学还是未受到足够重视。我国进入21世纪以来,经济和科技水平的快速发展大大加速了高等数学应用数学的推广和普及,人们强烈地意识到经济的发展越来越离不开高等数学的支持。但是,与此同时,我们也应该注意到目前在高等数学应用数学中存在的不足之处,主要体现在以下几个方面:首先是在教学的内容方面,更多的只是对数学理论的教授,而不能够把高等数学与相关专业相结合,继而把高等数学的理论知识应用到专业实践中去,造成了理论与实践的严重脱节;其次是在教学的手段和教学模式方面的不足,教师的教学方法陈旧,不能够根据实际情况的变化对教学手段进行更新;最后在教学的理念方面,部分数学教师仍没有意识到应用数学的重要性,只是对学生进行填鸭式的灌输,不利于高等数学应用数学的改革发展。

三、高等数学应用数学的改革措施

(一)学校完善课程设置,开展数学建模活动

在进行高等数学应用数学的改革过程中,学校应该始终处于主导地位,只有学校为教师和学生营造一个应用数学的良好氛围,才有可能推进高等数学的应用普及,不断实现理论与实际相结合,促进现实生活问题的解决。首先在高等数学的教材选编方面,教材编写的如何将直接影响教学的内容和方法,进而影响应用数学的教学效果。学校在进行选择教材时,要尽量选择与专业贴近,以解决生活实际问题,具有灵活性、拓展性和实践性的教材。其次在进行数学课程设置方面,要始终以不断提高学生的高等数学的应用能力为宗旨,根据现实情况对课程进行设置,如可以适当多设置一些实践性强的数学课程,适当减少理论性强的课程,可有效提高学生的数学应用能力。最后,学校应该为学生营造一个鼓励学生积极学习应用数学的活跃氛围,如在校园中定期举行数学建模活动或竞赛,鼓励学生勇于创新,培养学生发现问题、分析问题和解决问题的独立思考能力和创造力。

(二)教师加强自身的应用数学的理念,创新教学方法

教师在学生和应用数学的学习之间起着桥梁的连接作用,在调动学生的学习兴趣,转变学生的学习观念,创新学生的学习方法方面起着不可忽视的重要作用。因此要想对高等数学应用数学进行改革,就必须增强教师自身的应用数学的理念和意识,只有教师从内心充分认识到应用数学的重要性,才能更好地指引学生进行应用数学的学习。此外,数学教师在日常的教学实践中,要不断把应用数学和本专业的相关知识相结合,增强学生应用数学的意识,调动他们的积极性。与此同时,教师应该在建立新型的师生关系方面做出努力,这样可以为数学学习创建一个宽松和谐的氛围,有利于学生创造力的发挥。

(三)学生要自觉培养自身的数学应用能力

内因决定外因,要想真正实现高等数学应用教学的改革,最根本的还是培养学生自身应用数学的能力。学生可多参加数学建模活动,不断增强自身的实践能力,增强应用数学的意识。此外,在日常的应用数学课堂的学习中,多培养自身理论联系实际的能力,多运用数学思维对相关专业的实际问题进行思考,长此以往,学生就能不断加强自身运用高等数学应用数学的能力和素养。

结语:

综上所述,高等数学的应用数学与我们的实际生活和工作息息相关,在改革过程中,要始终坚持理论与实践相结合的原则,不断加强运用高等数学的能力。目前,国内都在积极探索如何进行高等数学应用数学的改革,但是,我们也要意识到高等数学应用数学的改革是多方面、长期的一个艰巨任务。总之,进行高等数学应用数学的改革就是要不断培养学生的数学应用意识,加强运用数学解决实际问题的能力,这一问题需要每个研究者认真探讨。

参考文献:

[1] 杜秀焕。高校高等数学培养学生应用能力的策略改革研究[J]。劳动保障世界(理论版),2013(09)。

[2] 迟子孟,王颖,赵欣,刘春艳。应用型本科院校高等数学教学改革研究[J]。现代商贸工业,2012(23)。

[3] 苏德毕力格。高等数学应用数学改革研究[J]。中国校外教育,2012(34)。

[4] 陈晓,赵晓花。对高等数学应用能力的相关问题研究[J]。佳木斯教育学院学报,2013(03)。

数学论文 篇6

摘 要:

数学专业中应用数学在各个方面都有很重要的实际应用,如教育工作者在数学建模的数学学习活动中应用详例讲解能更好地服务于学生主体。

关键词:应用数学;数学建模;教学组织形式

应用数学是高等大专院校的一门课程,其对于学生掌握一定的数学基本理论、服务专业课与思维方式方法等有着极为基础的作用。以下,笔者将结合教学实践对应用数学的教学活动发表几点简单认识。

一、重视数学建模在数学学习活动中应用详例讲解的重要作用

应用数学专业的最终教学目的在于培养学生逐渐具备运用数学知识解决现实问题的水平与能力,这就要求教师在教学过程中格外重视数学建模在学生学习活动中的重要作用。这既是帮助学生体会到所学应用数学与现实生活紧密联系的有效措施,同时,更是激发学生数学学习兴趣、帮助其进一步深化对于所学数学知识点认识与理解的重要途径。

例如,在学习微分方程模型的相关知识点之后,教师可以带领学生建立一个数学模型:

水污染问题是当今社会所面临的环境问题之一,某学生小组在实践调查研究的基础上得知某纸厂水库中原有的水量为500吨,假设含有5%污染物的废弃水以每分钟2吨的流动速度持续注入该纸厂的水库,那么,从时间t=0算起,多长时间之后该纸厂水库废弃水中的污染物含有量浓度将达到4%(设定为废弃水注入水库后,水库中的水将不再向外排出)?假设废弃水注入水库后,该造纸厂水库中的水又以每分钟2吨的速度反流出该水库,那么,从时间t=0算起,多长时间之后该纸厂水库废弃水中的污染物含有量浓度将达到4%?并依据计算出的最终结果向社会生活中的用水单位等提出有效控制污染水源的有效措施。

这样就将微分方程这一数学概念置于真实的现实情境之中,有利于学生主观探究能力与创造性学习思维发展,也有利于其更好地掌握应用数学思维的方式。

二、让教学组织形式更好地服务于学生学习

现代素质教育理念认为,学生是学习活动中的主体,教职员工则是学生各项学习活动中的扶持者与指导者,教育工作者必须在尊重所教学生实际认知规律的基础之上更快、更好地将学生的学习主体地位真正落实到各项教学活动中。

在我看来,要想达到素质教育理念的这一要求,让教学组织形式更好地服务于学生是重中之重。对于此,针对教师资源与学生实际人数众多这一突出矛盾问题,我认为高等院校教师在应用数学教学过程中可同其他教师共同组成帮扶学习小组,即每位教师帮扶一定数量的学生。如此,教师就能针对不同基础的学生采取不同的教学策略。如,针对学习基础较为薄弱的学生,帮扶教师可以将自身教学过程中积累的一些经验或者窍门介绍给所要帮助的学生,针对学习基础较为扎实的学生则可以有针对性地辅导他们参与一些科研项目的调查与研究,这一措施既有利于帮助学生巩固、夯实学习基础,提升其数学素质及修养能力;与此同时,教学相长,对于教师来讲,也是极大的优势。例如,通过对不同学生的辅导工作,教师能更深刻地体会到有层次教学的必要性及重要意义,进而更有针对性地采取数学教学活动。再如,学生数学水平的逐渐提高也将间接地推动教师积极地深入到数学科研的学习活动之中,这对于他们自身数学素养以及教学能力的提升都是一个很大的帮助。

总之,应用数学专业的教育工作者应当重视数学建模在数学学习活动中的重要作用,并确保教学组织形式更好地服务于学生主体,这样才能在确保良好教学效果的同时真正促进大专院校学生数学素养及数学实践运用能力的显著增强。

参考文献:

张丽丽。地方工科院校数学与应用数学专业人才培养模式研究[J]。陕西教育,2014(06)。

数学论文 篇7

摘要:

像其它院校教学一样,在职业技术院校的数学教育中,数学史不仅发挥着不可磨灭的作用,而且能够有效的开发学生的数学思维能力,让学生懂得掌握数学的思想。因此,文章就数学史的教育价值进行了一定程度的分析,以便进一步发挥数学史的教育价值。

关键词:数学史 数学教学

只有真正读懂历史、懂得历史的人,才能够对于数学进行进一步的理解。法国著名的数学家亨利庞加莱曾经说过这样一句话:“如果我们想要对数学的未来进行预测,我们首先就需要了解到数学这一门学科的历史以及现状。”随着最近几年职业技术院校的教育改革来看,已经将数学的文化价值推到了台前,也就使得人们对于数学史的关注越来越多。

一、数学史概念

数学史作为一门科学,研究了数学科学的发展以及规律,换句话说,就是对于数学研究的历史。数学史不仅仅是对数学内容、思想、方法的一种追溯,更多的是对于影响数学发展的各种因素的探索,也包含了在人类文明的发展上,数学史所带来的影响。所以,数学史不仅仅只是包含了数学本身,更多的是包含了文化、历史、哲学等众多的学科,属于一门交叉性较强的学科。

二、数学史在职业技术学校开展的必要性

在职业技术学院这一大环境之下,很多教师对于数学这一门课程都没有足够的重视,就谈不上数学史的教学了。因为,很多教师和学生都认为职业技术学院的学生就是为了学习专业的技术而来的,对于一些纯理论的东西是可有可无的。因此,在数学系当中,对于数学史的学习就没有引起足够的重视,而数学史知识的严重缺乏也就成为了学生在之后数学教育或者是科研方面的一大阻碍。因此,无论是否是职业技术学校,我们都需要从心里认识到数学史教育的必要性,要了解数学史的教育价值,从而在日常的教学当中,将数学史当做一门重点来抓,从而弥补以往在数学史这一方面的不足。

三、在职业技术教育当中,数学史的价值

在目前的职业技术院校的教育当中,已经越来越多的融入了数学史的教育,而对于数学教育,数学史的主要作用存在以下几点:

(一)有利于帮助学生理解数学

当数学家发现数学的时候,其思考是火热的,但是一旦研究结束了,我们面前呈现出来的则是“冰冷”的公式。所以,通过我们对于数学史的了解以及说明,我们就能够了解到在数学的研究当中,数学家是如何思考的、进行的。

例如:为什么古希腊人在开展数学的时候,要使用公理化的方法进行开展?古希腊人所处的是何种时代背景。而古希腊数学与中国的古代教育又存在如何的区别?弄明白了这些情况,对于学生在数学方面的理解能力的提高也有着一定的作用。而对数学老师而言,想要上好数学课,就需要自身具备良好的数学修养。

(二)有利于数学宏观认识的提高

作为一名专业的数学老师,并非是将书本上的知识传授给学生就完事了,更多的是需要为学生讲解数学发展的历史。作为一名优秀的数学教师,不仅需要授人以业,更多的是需要授人以法,从而做到受人以道。而在这里所说的“法”与“道”就要求了教师能够从宏观方面对于数学发展的情况能够理顺,能够深入到数学的本质当中去。数学史对于创新数学教育来说,起到了引导的作用。在数学史当中详细的对数学家在发现与发明的过程进行了及摘,数学老师对学生进行讲述后,也能够培养学生的创造力,让学生懂得如何去创造。

例如:在公元263年,在我国古籍《九章算术》的注释当中,刘微对于在圆周长计算当中的“割圆”思想提出了计算,而他在论述当中所说的:“割之弥细,所失弥少,以至于不可割,则与圆周合体,而无所失!”就成为了一种创新的激励,激励着学生的学习。

(三)促进学生培养良好的科学品质、正确的世界观

在接受职业技术教育的学生当中,大部分都是因为学生上的受过挫折的。尤其是在当今社会下注重分数轻视能力的大背景下,很多学生在思想上认为自己无法和考上了名牌大学的学生相比较,从而失去了自信心,给自己带上了“差生”的帽子。而这一种消极的状态则在学生日常的方方面面表现了出来。因此,他们在课堂之上除了掌握基本的知识点之外,更重要的是培养良好的人文素养。

数学史为数学教育德育功能的实现提供了一定的帮助。进行数学史教学能够提升学生对于数学学习的兴趣,也能够达到活跃数学课堂氛围的效果,从而有利于教学效率的提高。对于我国现代数学家的伟大贡献的讲述,能够起到一定的激励作用。而丰富的数学史料的融入能够培养出学生正确的价值观、情感以及态度。展示在数学领域当中古今中外的数学家的崇高精神以及伟大的人格对于学生培育学科精神、完善道德都起到了不可磨灭的作用。此外,在史料当中,对于数学家所犯的“低级”措施的恰当引出,对于学生正确的、理性的看待学习当中的失败,形成良好的科学品行也起到了至关重要的作用。

(四)数学史为之后的科研事业打下了坚实的基础

对于学生以后的数学研究工作来说,数学史是良好的方法论基础。“科学能够带给我们丰富的知识,但是历史却能够让我们拥有智慧。”现阶段的职业技术学生的学生也不可能从而很多的数学科研工作。但是,数学史对于以后志向在数学方面的学生,仍然起到了重要的作用。

数学史能够提升学生的科研意识的培养。通过数学史的学习,学生能够清楚的了解到数学问题的提出、解决以及哪些问题一直困扰着大家。数学史也能够为了学生之后的科研方向提供一定的基础。目前来说,数学的各个分支发展是极为不平衡的。很多分支虽然起步相对较晚,但是依然存在较大的进步控制,而这就成为了数学工作者一展才华的天堂。虽然,目前的职业技术学校的学生对于各个数学分支的认识相对有限,并且这一种有限的认识会影响到学生以后的选择。但是数学史的融入,不但可以帮助学生理顺数学的发展,还能够为他们之后的发展提供专业性的意见。因此,数学史的教育价值显而易见。

总之,在职业技术教育当中,想要将数学史的价值发挥出来,还需要两者的相互整合,有赖于所有的教学工作者的探讨与摸索,也希望本文中对于数学史的教育价值的分析与阐述能够为之后的工作尽一份微薄之力。

参考文献:

[1]张国定。 全面认识新课程下数学史的教育价值[J]。 教学与管理, 2010,(25)。

[2]岳荣华。 发掘数学史在数学教学中的教育功能[J]。 衡水学院学报, 2008,(01)。

大学数学论文 篇8

作为工科类大学公共课的一种,高等数学在学生思维训练上的培养、训练数学思维等上发挥着重要的做用。进入新世纪后素质教育思想被人们越来越重视,如果还使用传统的教育教学方法,会让学生失去学习高等数学的积极性和兴趣。以现教育技术为基础的数学建模,在实际问题和理论之间架起沟通的桥梁。在实际教学的过程中,高数老师以课后实验着手,在高等数学教学中融入数学建模思想,使用数学建模解决实际问题。

一、高等数学教学的现状

( 一) 教学观念陈旧化

就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及逻辑思维能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。

( 二) 教学方法传统化

教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。

二、建模在高等数学教学中的作用

对学生的想象力、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。

高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。

三、将建模思想应用在高等数学教学中的具体措施

( 一) 在公式中使用建模思想

在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。

( 二) 讲解习题的时候使用数学模型的方式

课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的'方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。

( 三) 组织学生积极参加数学建模竞赛

一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。

四、结束语

高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。

参考文献:

[1] 谢凤艳,杨永艳. 高等数学教学中融入数学建模思想[J]. 齐齐哈尔师范高等专科学校学报,2014 ( 02) : 119 -120.

[2] 李薇. 在高等数学教学中融入数学建模思想的探索与实践[J]. 教育实践与改革,2012 ( 04) : 177 -178,189.

[3] 杨四香. 浅析高等数学教学中数学建模思想的渗透 [J].长春教育学院学报,2014 ( 30) : 89,95.

[4] 刘合财. 在高等数学教学中融入数学建模思想 [J]. 贵阳学院学报,2013 ( 03) : 63 -65.

数学论文 篇9

摘要:

要想提高初中数学教学效率,数学教师必须要改变传统的教学策略,注重激发初中生的数学学习兴趣,改变学生对数学的畏难情绪,让学生在数学课堂真正活跃起来。探讨了如何提高初中数学教学效率,旨在为初中数学教学提供参考。

关键词:初中数学高效课堂教学效率 互动

初中数学教学既要使学生掌握丰富的数学知识和数学技能,还要培养初中生的数学素养。因此,初中数学教师要坚持“以教为主导,以生为主体”,使学生成为课堂教学的主人,改变传统“一言堂”的教学方式,激发初中生的数学学习兴趣,提高初中数学教学效率。

一、构建情境激趣,有效引入新课

初中数学教师在日常教学中,需要根据实际教学内容,构建高效的课堂教学情境,激发初中生的数学学习兴趣,从而有效的引入新课,使初中生的数学思维更加活跃,从而促进课堂教学的有效开展。比如,讲初中数学轴对称的相关知识时,我创建了教学情境: 我首先带领学生动手操作,在一张纸片上滴一滴墨水,然后将纸片对折压平,再重新打开,让学生观察两滴墨水之间的关系。初中生的学习兴趣非常浓,都踊跃的进行尝试。在学生操作之后,我总结出轴对称的概念: 把一个图形沿着某一条直线翻折过去,如果它能够与另一个图形重合,那么就说这两个图形成轴对称,这条直线就是对称轴,两个图形中的对应点( 即两个图形重合时互相重合的点) 叫做对称点。为了拓展初中生的思维,我鼓励学生想一想日常生活中常见的轴对称图形的例子。

二、运用信息技术,提高学习效率

随着信息技术在初中校园的普及,给初中数学课带来了新的发展机遇,极大地提高了初中数学教学质量。初中数学教师要运用信息技术辅助教学,充分调动初中生的学习积极性,利用信息技术的特性,营造轻松愉悦的课堂氛围。比如,讲初中数学《勾股定理》,我利用多媒体技术给初中生欣赏拼图活动,从而体现数学思维的严谨性,发展初中生的形象思维,促进数形结合思想的形成。

然后,我在多媒体课件上给初中生进行专题的讲解和训练,巩固初中生所学的知识,引导初中生运用勾股定理知识去解决实际生活中的问题。

三、开展师生互动,注重主体地位

一堂高效的数学课必须要有师生互动,数学教师和学生都必须全身心地投入到课堂中,这样才能够体现出素质教育和新课程改革的要求。在组织互。动活动时,数学教师要注重初中生的主体地位,优化初中生的思维习惯,鼓励初中生自主探究,为终身学习奠定基础。比如,讲初中数学《中心对称》,首先明确教学目标,要让初中生理解中心对称的概念和性质以及中心对称图形的概念,进一步培养学生的尺规作图能力。我带领初中生进行复习提问: 什么叫轴对称? 轴对称有什么性质? 作出四边形 ABCD 关于点 O 的旋转 180 度的图形。然后我设计了师生互动的小魔术,让初中生在实际参与过程中掌握中心对称的相关知识。数学教师拿出若干张非中心对称的扑克和一张中心对称的扑克,按牌面的多数指向整理好,请一位同学任意抽出一张扑克,把这张牌旋转 180°后再插入,再请这位同学洗牌,最后展开扑克牌,数学教师马上确定这位同学抽出的扑克。学生目不转睛地盯着老师,学习兴趣非常高。通过这样的互动方式,激发了学生的求知欲,有助于学生养成勤于动手、乐于探究的好习惯。

四、优化评价策略,培养学生的创新能力

在数学教学中,教师应该优化评价策略,针对不同的学生采取差异化的评价策略,培养初中生的创新能力。比如,在一次数学测试以后,班级中的一名学生成绩下滑较为严重,我并没有直接批评他,而是与他进行沟通,帮助他找到原因,鼓励他不要放弃。一堂数学课上,学生的参与度有多大,学生提出的问题深度和广度如何,与数学教师的课堂评价具有直接的关系,数学教师要及时进行教学反思,调整自己的教学方式,给初中生提供广阔的发展空间。

五、组织实践活动,提高学生的数学意识

数学知识具有较强的实践性和抽象性特点,数学教师要善于组织数学实践活动,将数学知识运用于实际生活中,锻炼初中生的数学意识,培养初中生的数学素养,从而使初中生获得基本的数学活动经验。我在实际教学中,根据初中生的个性特点,选择多样化的实践活动,引发初中生的数学思考。比如,讲初中数学《圆》,初中生已通过折叠、对称、平移旋转、推理证明等方式认识了许多图形的性质,积累了大量的空间与图形的经验。因此,教学时我设计实践活动,逐步培养初中生分类讨论和数形结合的数学思想。如防治“传染病”,人们增强了卫生意识,大街随地乱扔生活垃圾的人少了,人们自觉地将生活垃圾倒入垃圾桶中,A、B、C 为市内的三个住宅小区,环保公司要建一垃圾回收站,为方便起见,要使得回收站建在三个小区都相等的某处,请问如果你是工程师,你将如何选址? 通过积极引导,帮助初中生获得成功的体验,积累了丰富的活动经验。

参考文献

[1]李丽娟。 浅谈如何提高初中数学教学课堂效率[J]。 成功,2010,( 05) 。

[2]韩从军。 浅谈如何打造初中数学高效课堂[J]。数学学习与研究,2013,( 08) : 19 —20.