首页 > 教学教案 > 初中教案 > 初三教案 > 教科版初中物理九年级教案(最新4篇)正文

《教科版初中物理九年级教案(最新4篇)》

时间:

在教学中,认真备课,认真阅读教科参考书,结合自己的教学经验与学生的学习情况,认真编写好教案制定好教学计划。在传授学生知识的同时,关心爱护学生,特别是差生,课堂密切注意他们,教育他们求学勿半途而废。为大家精心整理了教科版初中物理九年级教案(最新4篇),希望能够给予您一些参考与帮助。

九年级物理全一册教案 篇1

一、教材分析

1、教材的地位和作用

本课时是八年级物理上册第三章《光现象》第四节,光的折射是重要的光学现象,是理解透镜成像的基础,同时又是解释日常生活中许多光现象的基础。光的折射现象学生比较熟悉,也比较感兴趣,通过对现象的分析,培养学生密切联系实际,运用科学知识来解释一些自然现象的习惯和能力,更重要是激发学生学习兴趣,提高科学素质,让学生从小崇尚科学,立志献身科学。本节教材让学生认识光的折射现象和初步规律,是为以后几节课学习活动进行充分准备。所以本节是本单元教学的重点。

2、教学目标

根据全面提高学生素质的总体目标与教学大纲的要求和本节教材内容及学生已有的认识基础,我确定本节的学习目标如下:

(1)知识目标:

知道光的折射现象及折射光线和折射角;

知道光的折射规律及在折射现象中光路可逆;

能够用光的折射解释生活中的一些简单现象。

(2)能力目标:

通过演示实验,指导学生观察现象,引导学生自己分析,归纳规律,培养学生的观察,分析,归纳能力。引导学生动手做实验,培养学生的动手能力及通过实验研究问题的习惯。

(3)情感目标:

培养学生学习物理的兴趣。

(4)德育目标:

通过对日常光现象的分析,破除迷信,热爱科学,进行唯物主义教育。

3、难点和重点

根据新课程标准的要求,及教材内容和学生学习的实际确定:

(1)重点:光的折射规律;光路可逆。

(2)难点:光线进入不同介质中,折射角和入射角的关系;用光的折射解释自然现象。

(3)关键:对入射角和折射角的确定。

二、选用的教具及设备

1、选择教具依据

丰富的教学用具及设备,提高了训练密度及广度,使教学过程从枯燥到有趣,从抽象到形象。进行课堂演示实验并利用计算机多媒体辅助教学,不仅提供了大量的教学信息,使学生在生动形象的环境中,得以迅速理解和掌握物理规律。激发学生们的学习兴趣,调动他们的主动性,积极性,创造性,从而达到提高课堂教学效率的目地。

2、教具:

光的折射演示仪;碗;适量的水;筷子;多媒体课件;录像剪辑。

三、处理

对日常光的折射现象学生有丰富的感性认识,以现象引入新课,学生学习目标明确,兴趣浓厚。光的折射规律的认识,宜先提出问题及研究方法,通过学生猜想,对照演示实验的观察,辅以多媒体模拟演示,学生思维清晰,准确,有利于规律的总结归纳,并注意理论联系实

际,重视知识的应用,让学生遵循认识的规律:从实践到理论,又从理论到实践。达到掌握知识,提高能力,从而提高课堂效率。

四、教法,学法

1、教法

根据教学内容的上下承接关系,学生刚学完光的反射,对光的现象已有一些简单的认识,对光学研究中的一些物理量已有初步的了解,如入射角,法线等。针对素质教育对学生能力的要求,本节采用观察分析,启发式教学法。体现"学生为主体,教师为主导"的教学思想。通过实验演示,观察分析,启发对比,总结归纳得出规律。在课堂上通过教师的引导,让学生进行演示实验和计算机的模拟实验的观察,使学生在头脑中有清晰的表象,以具体生动的感性认识为基础掌握知识,而不是生硬地死记硬背,同时在观察中培养能力,开展思维训练重视知识的应用,理论紧密联系实际。

2、学法

学生是教学活动主体,要使学生从"学会"转化成"会学",教师在教学中要注意学生学法的指导,根据本节的内容特征,教师在做好演示实验时,引导学生如何去观察实验 并由他们总结和发现规律,同时注意学生的非智力因素:自信心,毅力,兴趣,动机等培养,通过手势,眼神,表情等形体语言来激发学生的积极性。使学生通过观察总结规律,联系实际,运用规律解决问题。

本节采用观察,对比,分析的学习方法,引导学生获取知识,通过思考讨论,总结归纳出光的折射规律,应用折射规律解释一些自然现象,培养学生爱科学,用科学,提高学生的学习兴趣。

五、教学过程

物理九年级全一册教案 篇2

万有引力与航天

(一)知识网络

托勒密:地心说

人类对行 哥白尼:日心说

星运动规 开普勒 第一定律(轨道定律)

行星 第二定律(面积定律)

律的认识 第三定律(周期定律)

运动定律

万有引力定律的发现

万有引力定律的内容

万有引力定律 F=G

引力常数的测定

万有引力定律 称量地球质量M=

万有引力 的理论成就 M=

与航天 计算天体质量 r=R,M=

M=

人造地球卫星 M=

宇宙航行 G = m

mr

ma

第一宇宙速度7.9km/s

三个宇宙速度 第二宇宙速度11.2km/s

地三宇宙速度16.7km/s

宇宙航行的成就

(二)、重点内容讲解

计算重力加速度

1 在地球表面附近的重力加速度,在忽略地球自转的情况下,可用万有引力定律来计算。

G=G =6.67_ _ =9.8(m/ )=9.8N/kg

即在地球表面附近,物体的重力加速度g=9.8m/ 。这一结果表明,在重力作用下,物体加速度大小与物体质量无关。

2 即算地球上空距地面h处的重力加速度g’。有万有引力定律可得:

g’= 又g= ,∴ = ,∴g’= g

3 计算任意天体表面的重力加速度g’。有万有引力定律得:

g’= (M’为星球质量,R’卫星球的半径),又g= ,

∴ = 。

星体运行的基本公式

在宇宙空间,行星和卫星运行所需的向心力,均来自于中心天体的万有引力。因此万有引力即为行星或卫星作圆周运动的向心力。因此可的以下几个基本公式。

1 向心力的六个基本公式,设中心天体的质量为M,行星(或卫星)的圆轨道半径为r,则向心力可以表示为: =G =ma=m =mr =mr =mr =m v。

2 五个比例关系。利用上述计算关系,可以导出与r相应的比例关系。

向心力: =G ,F∝ ;

向心加速度:a=G , a∝ ;

线速度:v= ,v∝ ;

角速度: = , ∝ ;

周期:T=2 ,T∝ 。

3 v与 的关系。在r一定时,v=r ,v∝ ;在r变化时,如卫星绕一螺旋轨道远离或靠近中心天体时,r不断变化,v、 也随之变化。根据,v∝ 和 ∝ ,这时v与 为非线性关系,而不是正比关系。

一个重要物理常量的意义

根据万有引力定律和牛顿第二定律可得:G =mr ∴ 。这实际上是开普勒第三定律。它表明 是一个与行星无关的物理量,它仅仅取决于中心天体的质量。在实际做题时,它具有重要的物理意义和广泛的应用。它同样适用于人造卫星的运动,在处理人造卫星问题时,只要围绕同一星球运转的卫星,均可使用该公式。

估算中心天体的质量和密度

1 中心天体的质量,根据万有引力定律和向心力表达式可得:G =mr ,∴M=

2 中心天体的密度

方法一:中心天体的密度表达式ρ= ,V= (R为中心天体的半径),根据前面M的表达式可得:ρ= 。当r=R即行星或卫星沿中心天体表面运行时,ρ= 。此时表面只要用一个计时工具,测出行星或卫星绕中心天体表面附近运行一周的时间,周期T,就可简捷的估算出中心天体的平均密度。

方法二:由g= ,M= 进行估算,ρ= ,∴ρ=

(三)常考模型规律示例总结

1、 对万有引力定律的理解

(1)万有引力定律:自然界中任何两个物体都是相互吸引的,引力的大小跟这两个物体的质量的乘积成正比,跟它们的距离的平方成反比,两物体间引力的方向沿着二者的连线。

(2)公式表示:F= 。

(3)引力常量G:①适用于任何两物体。

②意义:它在数值上等于两个质量都是1kg的物体(可看成质点)相距1m时的相互作用力。

③G的通常取值为G=6。67×10-11Nm2/kg2。是英国物理学家卡文迪许用实验测得。

(4)适用条件:①万有引力定律只适用于质点间引力大小的计算。当两物体间的距离远大于每个物体的尺寸时,物体可看成质点,直接使用万有引力定律计算。

②当两物体是质量均匀分布的球体时,它们间的引力也可以直接用公式计算,但式中的r是指两球心间的距离。

③当所研究物体不能看成质点时,可以把物体假想分割成无数个质点,求出两个物体上每个质点与另一物体上所有质点的万有引力,然后求合力。(此方法仅给学生提供一种思路)

(5)万有引力具有以下三个特性:

①普遍性:万有引力是普遍存在于宇宙中的任何有质量的物体(大到天体小到微观粒子)间的相互吸引力,它是自然界的物体间的基本相互作用之一。

②相互性:两个物体相互作用的引力是一对作用力和反作用力,符合牛顿第三定律。

③宏观性:通常情况下,万有引力非常小,只在质量巨大的天体间或天体与物体间它的存在才有宏观的物理意义,在微观世界中,粒子的质量都非常小,粒子间的万有引力可以忽略不计。

〖例1〗设地球的质量为M,地球的半径为R,物体的质量为m,关于物体与地球间的万有引力的说法,正确的是:

A、地球对物体的引力大于物体对地球的引力。

物体距地面的高度为h时,物体与地球间的万有引力为F= 。

物体放在地心处,因r=0,所受引力无穷大。

D、物体离地面的高度为R时,则引力为F=

〖答案〗D

〖总结〗(1)矫揉造作配地球之间的吸引是相互的,由牛顿第三定律,物体对地球与地球对物体的引力大小相等。

(2)F= 。中的r是两相互作用的物体质心间的距离,不能误认为是两物体表面间的距离。

(3)F= 适用于两个质点间的相互作用,如果把物体放在地心处,显然地球已不能看为质点,故选项C的推理是错误的。

〖变式训练1〗对于万有引力定律的数学表达式F= ,下列说法正确的是:

A、公式中G为引力常数,是人为规定的。

B、r趋近于零时,万有引力趋于无穷大。

C、m1、m2之间的引力总是大小相等,与m1、m2的质量是否相等无关。

D、m1、m2之间的万有引力总是大小相等,方向相反,是一对平衡力。

〖答案〗C

2、 计算中心天体的质量

解决天体运动问题,通常把一个天体绕另一个天体的运动看作匀速圆周运动,处在圆心的天体称作中心天体,绕中心天体运动的天体称作运动天体,运动天体做匀速圆周运动所需的向心力由中心天体对运动天体的万有引力来提供。

式中M为中心天体的质量,Sm为运动天体的质量,a为运动天体的向心加速度,ω为运动天体的角速度,T为运动天体的周期,r为运动天体的轨道半径。

(1)天体质量的估算

通过测量天体或卫星运行的周期T及轨道半径r,把天体或卫星的运动看作匀速圆周运动。根据万有引力提供向心力,有 ,得

注意:用万有引力定律计算求得的质量M是位于圆心的天体质量(一般是质量相对较大的天体),而不是绕它做圆周运动的行星或卫星的m,二者不能混淆。

用上述方法求得了天体的质量M后,如果知道天体的半径R,利用天体的体积 ,进而还可求得天体的密度。 如果卫星在天体表面运行,则r=R,则上式可简化为

规律总结:

掌握测天体质量的原理,行星(或卫星)绕天体做匀速圆周运动的向心力是由万有引力来提供的。

物体在天体表面受到的重力也等于万有引力。

注意挖掘题中的隐含条件:飞船靠近星球表面运行,运行半径等于星球半径。

(2)行星运行的速度、周期随轨道半径的变化规律

研究行星(或卫星)运动的一般方法为:把行星(或卫星)运动当做匀速圆周运动,向心力来源于万有引力,即:

根据问题的实际情况选用恰当的公式进行计算,必要时还须考虑物体在天体表面所受的万有引力等于重力,即

(3)利用万有引力定律发现海王星和冥王星

〖例2〗已知月球绕地球运动周期T和轨道半径r,地球半径为R求(1)地球的质量?(2)地球的平均密度?

〖思路分析〗

设月球质量为m,月球绕地球做匀速圆周运动,

则: ,

(2)地球平均密度为

答案: ;

总结:①已知运动天体周期T和轨道半径r,利用万有引力定律求中心天体的质量。

②求中心天体的密度时,求体积应用中心天体的半径R来计算。

〖变式训练2〗人类发射的空间探测器进入某行星的引力范围后,绕该行星做匀速圆周运动,已知该行星的半径为R,探测器运行轨道在其表面上空高为h处,运行周期为T。

(1)该行星的质量和平均密度?(2)探测器靠近行星表面飞行时,测得运行周期为T1,则行星平均密度为多少?

答案:(1) ; (2)

3、 地球的同步卫星(通讯卫星)

同步卫星:相对地球静止,跟地球自转同步的卫星叫做同步卫星,周期T=24h,同步卫星又叫做通讯卫星。

同步卫星必定点于赤道正上方,且离地高度h,运行速率v是确定的。

设地球质量为 ,地球的半径为 ,卫星的质量为 ,根据牛顿第二定律

设地球表面的重力加速度 ,则

以上两式联立解得:

同步卫星距离地面的高度为

同步卫星的运行方向与地球自转方向相同

注意:赤道上随地球做圆周运动的物体与绕地球表面做圆周运动的卫星的区别

在有的问题中,涉及到地球表面赤道上的物体和地球卫星的比较,地球赤道上的物体随地球自转做圆周运动的圆心与近地卫星的圆心都在地心,而且两者做匀速圆周运动的半径均可看作为地球的R,因此,有些同学就把两者混为一谈,实际上两者有着非常显著的区别。

地球上的物体随地球自转做匀速圆周运动所需的向心力由万有引力提供,但由于地球自转角速度不大,万有引力并没有全部充当向心力,向心力只占万有引力的一小部分,万有引力的另一分力是我们通常所说的物体所受的重力(请同学们思考:若地球自转角速度逐渐变大,将会出现什么现象?)而围绕地球表面做匀速圆周运动的卫星,万有引力全部充当向心力。

赤道上的物体随地球自转做匀速圆周运动时由于与地球保持相对静止,因此它做圆周运动的周期应与地球自转的周期相同,即24小时,其向心加速度

;而绕地球表面运行的近地卫星,其线速度即我们所说的第一宇宙速度,

它的周期可以由下式求出:

求得 ,代入地球的半径R与质量,可求出地球近地卫星绕地球的运行周期T约为84min,此值远小于地球自转周期,而向心加速度 远大于自转时向心加速度。

已知地球的半径为R=6400km,地球表面附近的重力加速度 ,若发射一颗地球的同步卫星,使它在赤道上空运转,其高度和速度应为多大?

:设同步卫星的质量为m,离地面的高度的高度为h,速度为v,周期为T,地球的质量为M。同步卫星的周期等于地球自转的周期。

由①②两式得

又因为 ③

由①③两式得

:此题利用在地面上 和在轨道上 两式联立解题。

下面关于同步卫星的说法正确的是( )

A 。同步卫星和地球自转同步,卫星的高度和速率都被确定

B 。同步卫星的角速度虽然已被确定,但高度和速率可以选择,高度增加,速率增大;高度降低,速率减小

C 。我国发射的第一颗人造地球卫星的周期是114分钟,比同步卫星的周期短,所以第一颗人造地球卫星离地面的高度比同步卫星低

D 。同步卫星的速率比我国发射的第一颗人造卫星的速率小

:ACD

三、第七章机械能守恒定律

(一)、知识网络

(二)、重点内容讲解

1、机车起动的两种过程

一恒定的功率起动

机车以恒定的功率起动后,若运动过程所受阻力f不变,由于牵引力F=P/v随v增大,F减小。根据牛顿第二定律a=(F-f)/m=P/mv-f/m,当速度v增大时,加速度a减小,其运动情况是做加速度减小的加速运动。直至F=F'时,a减小至零,此后速度不再增大,速度达到值而做匀速运动,做匀速直线运动的速度是

vm=P/f,下面是这个动态过程的简单方框图

速度 v 当a=0时

a =(F-f)/m 即F=f时 保持vm匀速

F =P/v v达到vm

变加速直线运动 匀速直线运动

这一过程的v-t关系如图所示

车以恒定的加速度起动

由a=(F-f)/m知,当加速度a不变时,发动机牵引力F恒定,再由P=F•v知,F一定,发动机实际输出功P 随v的增大而增大,但当增大到额定功率以后不再增大,此后,发动机保持额定功率不变,继续增大,牵引力减小,直至F=f时,a=0 ,车速达到值vm= P额 /f,此后匀速运动

在P增至P额之前,车匀加速运动,其持续时间为

t0 = v0/a= P额/F•a = P额/(ma+F’)a

(这个v0必定小于vm,它是车的功率增至P额之时的瞬时速度)计算时,先计算出F,F-F’=ma ,再求出v=P额/F,最后根据v=at求t

在P增至P额之后,为加速度减小的加速运动,直至达到vm.下面是这个动态过程的方框图。

匀加速直线运动 变加速直线运动

匀速直线运动 v

vm

注意:中的仅是机车的牵引力,而非车辆所受的合力,这一点在计算题目中极易出错。

实际上,飞机’轮船’火车等交通工具的行驶速度受到自身发动机额定功率P和运动阻力f两个因素的共同制约,其中运动阻力既包括摩擦阻力,也包括空气阻力,而且阻力会随着运动速度的增大而增大。因此,要提高各种交通工具的行驶速度,除想办法提高发动机的额定功率外,还要想办法减小运动阻力,汽车等交通工具外型的流线型设计不仅为了美观,更是出于减小运动阻力的考虑。

2、 动能定理

内容:合力所做的功等于物体动能的变化

表达式:W合=EK2-EK1=ΔE或W合= mv22/2- mv12/2 。其中EK2表示一个过程的末动能mv22/2,EK1表示这个过程的初动能mv12/2。

物理意义:动能地理实际上是一个质点的功能关系,即合外力对物体所做的功是物体动能变化的量度,动能变化的大小由外力对物体做的总功多少来决定。动能定理是力学的一条重要规律,它贯穿整个物理教材,是物理课中的学习重点。

说明:动能定理的理解及应用要点

动能定理的计算式为标量式,v为相对与同一参考系的速度。

动能定理的研究对象是单一物体,或者可以看成单一物体的物体系。

动能定理适用于物体的直线运动,也适用于曲线运动;适用于恒力做功,也适用于变力做功,力可以是各种性质的力,既可以同时作用,也可以分段作用。只要求出在作用的过程中各力做功的多少和正负即可。这些正是动能定理解题的优越性所在。

若物体运动的过程中包含几个不同过程,应用动能定理时,可以分段考虑,也可以考虑全过程作为一整体来处理。

3、动能定理的应用

一个物体的动能变化ΔEK与合外力对物体所做的功W具有等量代换关系,若ΔEK›0,表示物体的动能增加,其增加量等于合外力对物体所做的正功;若ΔEK‹0,表示物体的动能减小,其减少良等于合外力对物体所做的负功的绝对值;若ΔEK=0,表示合外力对物体所做的功等于零。反之亦然。这种等量代换关系提供了一种计算变力做功的简便方法。

动能定理中涉及的物理量有F、L、m、v、W、EK等,在处理含有上述物理量的力学问题时,可以考虑使用动能定理。由于只需从力在整个位移内的功和这段位移始末两状态动能变化去考察,无需注意其中运动状态变化的细节,又由于动能和功都是标量,无方向性,无论是直线运动还是曲线运动,计算都会特别方便。

动能定理解题的基本思路

选取研究对象,明确它的运动过程。

分析研究对象的受力情况和各个力做功情况然后求各个外力做功的代数和。

明确物体在过程始末状态的动能EK1和EK2。

列出动能定理的方程W合=EK2-EK1,及其他必要的解题过程,进行求解。

4、应用机械能守恒定律的基本思路:

应用机械能守恒定律时,相互作用的物体间的力可以是变力,也可以是恒力,只要符合守恒条件,机械能就守恒。而且机械能守恒定律,只涉及物体第的初末状态的物理量,而不须分析中间过程的复杂变化,使处理问题得到简化,应用的基本思路如下:

选取研究对象-----物体系或物体。

根据研究对象所经右的物理过程,进行受力、做功分析,判断机械能是否守恒。

恰当地选取参考平面,确定对象在过程的初末状态时的机械能。(一般选地面或最低点为零势能面)

根据机械能守恒定律列方程,进行求解。

注意:(1)用机械能守恒定律做题,一定要按基本思路逐步分析求解。

(2)判断系统机械能是否守怛的另外一种方法是:若物体系中只有动能和势能的相互转化而无机械能与其它形式的能的转化,则物体系机械能守恒。

(三)常考模型规律示例总结

1、 机车起动的两种过程

(1)一恒定的功率起动

机车以恒定的功率起动后,若运动过程所受阻力f不变,由于牵引力F=P/v随v增大,F减小。根据牛顿第二定律a=(F-f)/m=P/mv-f/m,当速度v增大时,加速度a减小,其运动情况是做加速度减小的加速运动。直至F=F'时,a减小至零,此后速度不再增大,速度达到值而做匀速运动,做匀速直线运动的速度是

vm=P/f,下面是这个动态过程的简单方框图

速度 v 当a=0时

a =(F-f)/m 即F=f时 保持vm匀速

F =P/v v达到vm

变加速直线运动 匀速直线运动

(2)车以恒定的加速度起动

由a=(F-f)/m知,当加速度a不变时,发动机牵引力F恒定,再由P=F•v知,F一定,发动机实际输出功P 随v的增大而增大,但当增大到额定功率以后不再增大,此后,发动机保持额定功率不变,继续增大,牵引力减小,直至F=f时,a=0 ,车速达到值vm= P额 /f,此后匀速运动

在P增至P额之前,车匀加速运动,其持续时间为

t0 = v0/a= P额/F•a = P额/(ma+F’)a

(这个v0必定小于vm,它是车的功率增至P额之时的瞬时速度)计算时,先计算出F,F-F’=ma ,再求出v=P额/F,最后根据v=at求t

在P增至P额之后,为加速度减小的加速运动,直至达到vm.下面是这个动态过程的方框图。

匀加速直线运动 变加速直线运动

匀速直线运动 v

这一过程的关系可由右图所示 vm

注意:中的仅是机车的牵引力,而非车辆所受的合力,这 v0

一点在计算题目中极易出错。

实际上,飞机’轮船’火车等交通工具的行驶速度受到自身发动机额定功率P和运动阻力f两个因素的共同制约,其中运动阻力既包括摩擦阻力,也包括空气阻力,而且阻力会随着运动速度的增大而增大。因此,要提高各种交通工具的行驶速度,除想办法提高发动机的额定功率外,还要想办法减小运动阻力,汽车等交通工具外型的流线型设计不仅为了美观,更是出于减小运动阻力的考虑。

一汽车的额定功率为P0=100KW,质量为m=10×103,设阻力恒为车重的0.。1倍,取

若汽车以额定功率起①所达到的速度vm②当速度v=1m/s时,汽车加速度为少?③加速度a=5m/s2时,汽车速度为多少?g=10m/s2

若汽车以的加速度a=0.5m/s2起动,求其匀加速运动的最长时间?

①汽车以额定功率起动,达到速度时,阻力与牵引力相等,依题,所以 vm=P0/F=P0/f=P0/0.1mg=10m/s

②汽车速度v1=1m/s时,汽车牵引力为F1

F1=P0/v1==1×105N

汽车加速度为 a1

a1=(F1-0.1mg)/m=90m/s2

③汽车加速度a2=5m/s2时,汽车牵引力为F2

F2-0.1mg=ma2 F2=6×104N

汽车速度v2=P0/F2=1.67m/s

汽车匀加速起动时的牵引力为:

F=ma+f=ma+0.1mg =(10×103×0.5+10×103×10)N=1.5×104N

达到额定功率时的速度为:vt=P额/F=6.7m/s

vt即为匀加速运动的末速度,故做匀加速运动的最长时间为:

t=vt/a=6.7/0.5=13.3s

1 ①vm=10m/s ②a1=90m/s2 ③v2=1.67m/s

2、 t=13.3s

⑴机车起动过程中,发动机的功率指牵引力的功率,发动机的额定功率指的是该机器正常工作时的输出功率,实际输出功率可在零和额定值之间取值。所以,汽车做匀加速运动的时间是受额定功率限制的。

⑵飞机、轮船、汽车等交通工具匀速行驶的速度受额定功率的限制,所以要提高速度,必须提高发动机的额定功率,这就是高速火车和汽车需要大功率发动机的原因。此外,要尽可能减小阻力。

⑶本题涉及两个速度:一个是以恒定功率起动的速度v1,另一个是匀加速运动的速度v2,事实上,汽车以匀加速起动的过程中,在匀加速运动后还可以做加速度减小的运动,由此可知,v2>v1

汽车发动机的额定功率为60kw,汽车质量为5t,运动中所受阻力的大小恒为车重的0.1倍。

若汽车以恒定功率启动,汽车所能达到的速度是多少?当汽车以5m/s时的加速度多大?

若汽车以恒定加速度0.5m/s2启动,则这一过程能维持多长时间?这一过程中发动机的牵引力做功多少?

(1)12m/s , 1.4m/s2 (2) 16s , 4.8×105J

2、 动能定理

内容和表达式

合外力所做的功等于物体动能的变化,即

W = EK2-EK1

动能定理的应用技巧

一个物体的动能变化ΔEK与合外力对物体所做的功W具有等量代换关系。若ΔEK>0,表示物体的动能增加,其增加量等于合外力对物体所做的正功;若ΔEK<0,表示物体的动能减少,其减少量等于合外力对物体所做的负功的绝对值;若ΔEK=0,表示合外力对物体所做的功为零。反之亦然。这种等量代换关系提供了一种计算变力做功的简便方法。

动能定理中涉及的物理量有F、s、m、v、W、EK等,在处理含有上述物理量的力学问题时,可以考虑使用动能定理。由于只需从力在整个位移内的功和这段位移始末两状态的动能变化去考虑,无需注意其中运动状态变化的细节,又由于动能和功都是标量,无方向性,无论是直线运动还是曲线运动,计算都会特别方便。当题给条件涉及力的位移,而不涉及加速度和时间时,用动能定理求解比用牛顿第二定律和运动学公式求解简便用动能定理还能解决一些用牛顿第二定律和运动学公式难以求解的问题,如变力做功过程、曲线运动等。

3、 机械能守恒

系统内各个物体若通过轻绳或轻弹簧连接,则各物体与轻弹簧或轻绳组成的系统机械能守恒。

我们可以从三个不同的角度认识机械能守恒定律:

从守恒的角度来看:过程中前后两状态的机械能相等,即E1=E2;

从转化的角度来看:动能的增加等于势能的减少或动能的减少等于势能的增加,△EK=-△EP

从转移的角度来看:A物体机械能的增加等于B物体机械能的减少△EA=-△EB

解题时究竟选取哪一个角度,应根据题意灵活选取,需注意的是:选用(1)式时,必须规定零势能参考面,而选用(2)式和(3)式时,可以不规定零势能参考面,但必须分清能量的减少量和增加量。

〖例2〗如图所示,一轻弹簧固定于O点,另一端系一重物,将重物从与悬点在同一水平面且弹簧保持原长的A点无初速度地释放,让它自由摆下,不计空气阻力,在重物由A点向最低点的过程中,正确的说法有:

A、重物的重力势能减少。 B、重物的机械能减少。

C、重物的动能增加,增加的动能等于重物重力势能的减少量。

D、重物和轻弹簧组成的每每机械能守恒。

〖答案〗ABD

初中九年级物理教案 篇3

【力学部分】

1、速度:V=S/t

2、重力:G=mg

3、密度:ρ=m/V

4、压强:p=F/S

5、液体压强:p=ρgh

6、浮力:

(1)、F浮=F’-F(压力差)

(2)、F浮=G-F(视重力)

(3)、F浮=G(漂浮、悬浮)

(4)、阿基米德原理:F浮=G排=ρ液gV排

7、杠杆平衡条件:F1L1=F2L2

8、理想斜面:F/G=h/L

9、理想滑轮:F=G/n

10、实际滑轮:F=(G+G动)/n(竖直方向)

11、功:W=FS=Gh(把物体举高)

12、功率:P=W/t=FV

13、功的原理:W手=W机

14、实际机械:W总=W有+W额外

15、机械效率:η=W有/W总

16、滑轮组效率:

(1)、η=G/nF(竖直方向)

(2)、η=G/(G+G动)(竖直方向不计摩擦)

(3)、η=f/nF(水平方向)

【热学部分】

1、吸热:Q吸=Cm(t-t0)=CmΔt

2、放热:Q放=Cm(t0-t)=CmΔt

3、热值:q=Q/m

4、炉子和热机的效率:η=Q有效利用/Q燃料

5、热平衡方程:Q放=Q吸

6、热力学温度:T=t+273K

【电学部分】

1、电流强度:I=Q电量/t

2、电阻:R=ρL/S

3、欧姆定律:I=U/R

4、焦耳定律:

(1)、Q=I2Rt普适公式)

(2)、Q=UIt=Pt=UQ电量=U2t/R(纯电阻公式)

5、串联电路:

(1)、I=I1=I2

(2)、U=U1+U2

(3)、R=R1+R2(1)、W=UIt=Pt=UQ(普适公式)

(2)、W=I2Rt=U2t/R(纯电阻公式)

6、并联电路:

(1)、I=I1+I2

(2)、U=U1=U2

(3)、1/R=1/R1+1/R2[R=R1R2/(R1+R2)]

(4)、I1/I2=R2/R1(分流公式)

(5)、P1/P2=R2/R1

7、定值电阻:

(1)、I1/I2=U1/U2

(2)、P1/P2=I12/I22

(3)、P1/P2=U12/U22

8、电功:

(1)、W=UIt=Pt=UQ(普适公式)

(2)、W=I2Rt=U2t/R(纯电阻公式)

9、电功率:

(1)、P=W/t=UI(普适公式)

(2)、P=I2R=U2/R(纯电阻公式)

九年级人教版物理教案 篇4

课 题 1.初步认识,正确说出的单位,并能正确地进行2.欧姆定律简单应用。 教学重点 欧姆定律的。

其中:U——电压(V) I——电流(A) R——电阻(Ω)

注意:欧姆定律反映同一时刻、同一段电路中I、U、R之间的关系。

导出式:;

【典型例题】一辆汽车的车灯,灯丝电阻为30 Ω,接在12 V的电源两端,求通过这盏电灯的电流。

【答案】0.4A

【解析】

已知:,求I

解:

【针对训练1】在如图所示的电路中,调节滑动变阻器 R',使灯泡正常发光,用电流表测得通过它的电流值是0.6 A。已知该灯泡正常发光时的电阻是20 Ω,求灯泡两端的电压。

【答案】12V

【解析】

已知:,求

解:由串联电路电流特点可知:,根据可得:,则:

【针对训练2】加在某一电阻器两端的电压为5 V时,通过它的电流是0.5 A,则该电阻器的电阻应是多大?如果两端的电压增加到20 V,此时这个电阻器的电阻值是多大?通过它的电流是多大?

【答案】10 Ω;2A

【解析】

依题意画电路图如下:

由得:

当导体两端电压增大到20V时,如下图所示:

二、总结梳理,内化目标

欧姆定律

1.内容:

2.公式:

3.对欧姆定律的理解:

I、U、R应指同一导体或同一部分电路;

I、U、R的单位应统一,采用国际单位。 1、回顾本节学习内容

2、在交流的基础上进行学习小结。 三、今日感悟