首页 > 教学教案 > 初中教案 > 初一教案 > 初一数学教案上册(优秀10篇)正文

《初一数学教案上册(优秀10篇)》

时间:

作为一名无私奉献的老师,时常需要编写教案,教案是教材及大纲与课堂教学的纽带和桥梁。那么什么样的教案才是好的呢?这次漂亮的小编为您带来了初一数学教案上册(优秀10篇),在大家参照的同时,也可以分享一下给您最好的朋友。

初一的数学上册教案 篇1

学习目标

1、认识简单的几何体棱柱、圆柱、圆锥、球等,掌握其中的相同之处和不同之处,会对其进行简单分类。

2、认识点、线、面的运动会产生什么几何体。

学习重点

认识一些基本的几何体,认识几何体是什么运动形成的

学习难点

描述几何体的特征,对几何体,进行分类,认识点、线、面的运动能产生什么几何体。

行为提示:创景设疑,帮助学生知道本节课学什么。

行为提示:让学生通过阅读教材后,独立完成“自学互研”的所有内容,并要求做完了的小组长督促组员迅速完成。

说明:学生通过观察、分析,掌握棱柱的分类方法,并能用自己的语言描述棱柱与圆柱的相同点与不同点。情景导入生成问题

先阅读教材第2页“想一想”上方的图片内容,并完成书中所提出的问题。

说明学生很容易找出以前学过的几何体以及与笔筒形状类似的物体,有利于学生从直观形象认识上升到抽象理性认识。

归纳结论与笔筒形状类似的几何体称为棱柱。

类比探究,总结提高 篇2

如果将4换成-1,还有类似于上述的结论吗?

先让学生直观观察,然后教师再利用“减法是与加法相反的运算”引导学生换一个角度去验算。

计算(-1)-(-3)就是要求一个数x,使x与-3相加得-1,因为2与-3相加得-1,所以x应是2,即(-1)-(-3)=2 ①,

又因为(-1)+(+3)=2 ②,

由①②有(-1)-(-3)=-1+(+3) ③,

即上述结论依然成立。

试一试:如果把4换成0、-5,用上面的方法考虑0-(-3),(-5)-(-3),这些数减-3的结果与它加上+3的结果相同吗?

让学生利用“减法是加法的相反运算”得出结果,再与加法算式的结果进行比较,从而得出这些数减-3的结果与它们加+3的结果相同的结论。

再试:把减数-3换成正数,结果又如何呢?

计算9-8与9+(-8);15-7与15+(-7)

从中又能有新发现吗?

让学生通过计算总结如下结论:减去一个正数等于加上这个正数的相反数。

归纳:由上述实验可发现,有理数的减法可以转化为加法来进行。

减法法则:减去一个数,等于加上这个数的相反数。

用字母表示:a-b=a+(-b)。

(在上述实验中,逐步渗透了一种重要的数学思想方法——转化)

初一数学上册教案 篇3

教学目的:

1、了解计算器的性能,并会操作和使用;

2、会用计算器求数的平方根;

重点:用计算器进行数的加、减、乘、除、乘方和开方的计算;

难点:乘方和开方运算;

教学过程:

1.计算器的使用介绍(科学计算器)

2.用计算器进行加、减、乘、除、乘方、开方运算

例1用计算器求下列各式的值。

(1)(-3.75)+(-22.5) (2)51.7(-7.2)

解(1)

(-3.75)+(-22.5)=-26.25

(2)

51.7(-7.2)=-372.24

说明输入数据时,按键顺序与写这个数据的顺序完全相同,但输入负数时,符号转换键要放在数据之后键入。

随堂练习

用计算器求值

1.9.23+10.2 2.(-2.35)×(-0.46)

答案1.37.8 2.1.081

初一的数学上册教案 篇4

【教学目标】

知识与技能

了解并掌握数据收集的基本方法。

过程与方法

在调查的`过程中,要有认真的态度,积极参与。

情感、态度与价值观

体会统计调查在解决实际问题中的作用,逐步养成用数据说话的良好习惯。

【教学重难点】

重点:掌握统计调查的基本方法。

难点:能根据实际情况合理地选择调查方法。

【教学过程】

一、讲授新课

像前面提到的收集数据的活动中,全班同学是我们要考察的对象,我们采用问卷对全体同学作了逐一调查,像这样对全体对象进行的调查叫做全面调查。

调查、试验如采用普查可以收集到较全面、准确的数据,但普查的工作量比较大,有时受客观条件(人力、财力等)的限制难以进行,有时由于调查具有破坏性,不允许采用。在这些情况下,常常采用抽样调查(samplingsurvey),即从被考察的全体对象中抽出一部分对象进行考察的调查方式。

在一个统计问题中,我们把所要考察对象的全体叫做总体(population),其中的每一个考察对象叫做个体(individual),从总体中所抽取的一部分个体叫做总体的一个样本(sample),样本中个体的数目叫做样本容量(samplesize)。

例如,在通过试验考察500只新工艺生产的灯泡的使用寿命时,从中抽取50只进行试验。这500只灯泡的使用寿命的全体是总体,其中每只灯泡的使用寿命是个体,抽取的50只灯泡的使用寿命是一个样本,50是这个样本的样本容量。

为了使抽取的50只灯泡能很好地反映500只灯泡的情况,抽取时要使每只灯泡逐一进行编号,再把编号写在小纸片上,将小纸片揉成团,放在一个不透明的容器内,充分搅拌后,从中一个个地抽取50个号签。

上面抽取样本的过程中,总体中的各个个体都有相等的机会被抽到,像这样的抽样方法是一种简单随机抽样(simplerandomsampling)。

师:以“你知道父母的生日吗?”为题在班级进行调查,请设计一张问卷调查表。

学生小组合作、讨论,学生代表展示结果。

教师指导、评论。

师:除了问卷调查外,我们还有哪些方法收集到数据呢?

学生小组讨论、交流,学生代表回答。

师:收集数据的直接方法有访问、调查、观察、测量、试验等,间接方法有查阅资料、上网查询等。就以下统计的数据,你认为选择何种方法去收集比较合适?

(1)你班中的同学是如何安排周末时间的?

(2)我国濒临灭绝的植物数量;

(3)某种玉米种子的发芽率;

(4)学校门口十字路口每天7:00~7:10时的车流量。

学生讨论,并举手回答。

师:采用何种方法一定要结合实际问题来定。在解决问题(1)的过程中,不但要同学们动手调查,并且对全班所有学生都要调查,像这样对全体对象进行的调查叫做全面调查(普查)。同学们还知道哪些数据的收集需要全面调查吗?

学生讨论,并回答。

生:如人口普查、本班同学的出生年月、某班学生50米跑成绩等。

师:很好!下列问题也适合采用普查方式来收集数据吗?

(1)了解某批次炮弹的杀伤半径;

(2)某一天全国牛肉的平均价格;

(3)一批罐头产品的质量检查;

(4)对某条河的河水的污染情况的调查。

学生讨论、分析,并举手回答。

师:普查可以收集到较全面、准确的数据,但普查的工作量比较大,有时受到客观条件(如人力、财力等)的限制难以进行,有时由于调查具有破坏性,不允许采用。在这些情况下,常采用抽样调查,即从被考察的全体对象中抽出一部分对象进行考察的调查方式。

二、例题讲解

【例】(1)电视台准备在某市调查一电视节目的收视率,需要对所有看电视的人进行全面调查吗?对一所中学学生的调查结果能否作为该节目的收视率?

(2)对本年级同学是否喜欢某电视节目调查的结果,能代表学校全体同学的意见吗?如果不适用,应如何改进调查方法?

解:(1)电视台不可能对每个看电视的人进行全面调查。对这?所中学学生的调查结果不能作为该节目的收视率,因为调查对象只有中学生,缺乏代表性;

(2)对本年级同学是否喜欢某电视节目的调查结果不能代表

《6。2普查与抽样调查》课时练习

2。下列事件中最适合使用普查方式收集数据的是()

A。为制作校服,了解某班同学的身高情况

B。了解全市初三学生的视力情况

C。了解一种节能灯的使用寿命

D。了解我省农民的年人均收入情况

答案:A

解析:解答:A。人数不多,适合使用普查方式,所以A正确;

B。人数较多,结果的实际意义不大,因而不适用普查方式,所以B错误;

C。是具有破坏性的调查,因而不适用普查方式,所以C错误;

D。人数较多,结果的实际意义不大,因而不适用普查方式,所以D错误。

故选:A。

分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似。此题考查了抽样调查和全面调查,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查选用普查。

《6。2普查与抽样调查》基础巩固

1、(知识点1)要调查某校九年级550名学生周日的睡眠时间,下列调查对象选取最合适的是()

A、选取该校一个班级的学生

B、选取该校50名男生

C、选取该校50名女生

D、随机选取该校50名九年级学生

2、(题型二)下列调查适合用抽样调查的是()

A、了解义乌电视台“同年哥讲新闻”栏目的收视率

B、了解禽流感H7N9确诊病人同机乘客的健康状况

C、了解某班每个学生家庭电脑的数量

D、“神七”载人飞船发射前对重要零部件的检查

3、(题型三)为了了解某市八年级男生的身高,有关部门准备对200名八年级男生的身高做调查,以下调查方案中比较合理的是()

A、查阅外地200名八年级男生的身高统计资料

B、测量该市一所中学200名八年级男生的身高

C、测量该市两所农村中学各100名八年级男生的身高

D、在该市市区任选两所中学,农村任选两所中学,每所中学用抽签的方法分别选出50名八年级男生,然后测量他们的身高

例1】计算: 篇5

16+(-25)+24+(-35)

初一数学上册教案 篇6

一、教学目标:

1、知识目标:

使学生理解同类项的概念和合并同类项的意义,学会合并同类项。

2、能力目标:

培养学生观察、分析、归纳和动手解决问题的能力,初步使学生了解数学的分类思想。

3、情感目标:

借助情感因素,营造亲切和谐活泼的课堂气氛,激励全体学生积极参与教学活动。培养他们团结协作,严谨求实的学习作风和锲而不舍,勇于创新的精神。

二、教学重点、难点:

重点:同类项的概念和合并同类项的法则

难点:合并同类项

三、教学过程:

(一)情景导入:

1、观察下面的图片,并将这些图片分类:

你是依据什么来进行分类的呢?

生活中,我们常常为了需要把具有相同特征的事物归为一类。

2、对下列水果进行分类:

(二)新知探究1:

1、对下列八个单项式进行分类:

a,6_2,5,cd,-1,2_2,4a,-2cd

这些被归为同一类的项有什么相同的特征?

2、揭示同类项的概念。

同类项:所含字母相同,并且相同字母的指数也相同的项,叫做同类项。另外,所有的常数项都是同类项。

《3.4合并同类项》同步练习

1、已知代数式2a3bn+1与-3am-2b2是同类项,则2m+3n=________.

2、若-4_ay+_2yb=-3_2y,则a+b=_______.

3、下面运算正确的是( )

A.3a+2b=5ab B.3a2b-3ba2=0

C.3_2+2_3=5_5 D.3y2-2y2=1

4、已知一个多项式与3_2+9_的和等于3_2+4_-1,则这个多项式是( )

A.-5_-1 B.5_+1

C.-13_-1 D.13_+1

《3.4合并同类项》测试

1、下列说法中,正确的是( )

A.字母相同的项是同类项

B.指数相同的项是同类项

C.次数相同的项是同类项

D.只有系数不同的项是同类项

动手实践,发现新知 篇7

观察、探究、讨论:从③式能看出减-3相当于加哪个数吗?

结论:减去-3等于加上-3的相反数+3。

初一数学上册教案 篇8

〖教学目的〗

〖知识与技能目标:〗理解有理数减法的意义。

〖过程与方法:〗会进行有理数减法运算

〖情感态度与价值观:〗

有意识培养学生学习数学的信心和克服困难的勇气,从中体味成功的快乐。

〖教学重点、难点:〗重点:异号两数相减。难点:异号两数相减。

教学方法:〗引导发现法

〖教具准备:〗尺、小黑板。

〖教学过程:〗

Ⅰ。复习提问:

1、叙述有理数加法法则。

2、两个有理数的和一定大于每一个加数吗?

3.10比3大多少?10比-3大多少?-10比3大多少?如何计算?

4.3-10有意义吗?它应当等于多少?

注:问2是要向学生强调,两数的和不一定大于每一个加数,一个数加一个非零的有理数,其和可能增加也可能减少。问3是向学生说明求一个数比另一个数大多少在有理数范围内同样要用减法运算。问2和问3都是为了引入新课而设计的。

Ⅱ。新课讲解:

1、由问2、问3讲解有理数减法的意义。

在正有理数范围内3-10是没有意义的,因为3比10小,问3比10大多少,问题的本身就有问题,但引入负数就不同了。如果你有3元钱向售货员买了10元的物品,如果售货员让你先把物品拿走,那么你将欠售货员7元。这件事实如用算式表达,即3-10=-7。

由实际运算的例子归纳有理微减法法则。

考察:3-10=3+(-10)=-7,3-(-10)=3+10=13,

(-10)-(-3)=-10+3=-7,(-10)-7=-10+(-7)=-17。

等式左边的运算结果,用减法意义求出。3比10大-7,3比-10大13,-10比-3大-7,-10比7大-17,或画数轴,让学生观察得出。考察以上计算后。提问:减法是否都可转化为加法计算?启发学生自己得出有理数减法法则:减去一个数等于加上这个数的相反数。

3、讲解例题:

(l)补充例题:问15℃比5℃高多少度?15℃比-5℃呢?-5℃比15℃呢?

解:∵15-5=10,∴15℃比5℃高10℃;

∵15-(-5)-15+5=20,∴15℃比-5℃高20℃;

∵-5-15=-5+(-15)=-20,∴-5℃比15℃高-20℃。即-5℃

比15℃低20℃。

(2)教科书例1、例2。

Ⅲ。做一做

课堂练习:教科书第82页练习第1~3题。

Ⅳ。课时小结

有理数减法的意义。

Ⅴ。课后作业

1、习题2.6A组第1~9题,B组选做。

《2.5有理数的减法》同步练习

2、(题型一)李明的练习册上有这样一道题:计算|(-3)+_|,其中“_”是被墨水污染而看不到的一个数,他翻看了后边的答案得知该题的计算结果为6,那么“_”表示的数应该是。

3、(考点一)计算:(1)-2- (+10);

(2)0-(-3.6);

(3)(-30)-(-6)-(+6)-(-15);

《2.5有理数的减法》测试

16、下表记录了七年级(1)班一个组学生的体重与标准体重的差(正号表示比标准体重重,负号表示比标准体重轻),标准体重是50 kg.

姓名小明小丁小丽小文小天小乐

体重与标准体重的差(kg)-5+3-7+4+60

(1)谁最重?谁最轻?

(2)最重的比最轻的重多少千克?

初一数学上册教案 篇9

教学目标:

1、经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推力意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。

2、探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单的推理的意识及能力。

重点难点:

重点:了解勾股定理的由来,并能用它来解决一些简单的问题。

难点:勾股定理的发现

教学过程

一、创设问题的情境,激发学生的学习热情,导入课题

出示投影1(章前的图文p1)教师道白:介绍我国古代在勾股定理研究方面的贡献,并结合课本p5谈一谈,讲述我国是最早了解勾股定理的国家之一,介绍商高(三千多年前周期的数学家)在勾股定理方面的贡献。

出示投影2(书中的P2图1—2)并回答:

1、观察图1-2,正方形A中有_______个小方格,即A的面积为______个单位。

正方形B中有_______个小方格,即A的面积为______个单位。

正方形C中有_______个小方格,即A的面积为______个单位。

2、你是怎样得出上面的结果的?在学生交流回答的基础上教师直接发问:

3、图1—2中,A,B,C之间的面积之间有什么关系?

学生交流后形成共识,教师板书,A+B=C,接着提出图1—1中的A.B,C的关系呢?

二、做一做

出示投影3(书中P3图1—4)提问:

1、图1—3中,A,B,C之间有什么关系?

2、图1—4中,A,B,C之间有什么关系?

3、从图1—1,1—2,1—3,1|—4中你发现什么?

学生讨论、交流形成共识后,教师总结:

以三角形两直角边为边的正方形的面积和,等于以斜边的正方形面积。

三、议一议

1、图1—1、1—2、1—3、1—4中,你能用三角形的边长表示正方形的面积吗?

2、你能发现直角三角形三边长度之间的关系吗?

在同学的交流基础上,老师板书:

直角三角形边的两直角边的平方和等于斜边的平方。这就是的“勾股定理”

也就是说:如果直角三角形的两直角边为a,b,斜边为c

那么

我国古代称直角三角形的较短的直角边为勾,较长的为股,斜边为弦,这就是勾股定理的由来。

3、分别以5厘米和12厘米为直角边做出一个直角三角形,并测量斜边的长度(学生测量后回答斜边长为13)请大家想一想(2)中的规律,对这个三角形仍然成立吗?(回答是肯定的:成立)

四、想一想

这里的29英寸(74厘米)的电视机,指的是屏幕的长吗?只的是屏幕的款吗?那他指什么呢?

五、巩固练习

1、错例辨析:

△ABC的两边为3和4,求第三边

解:由于三角形的两边为3、4

所以它的第三边的c应满足=25

即:c=5

辨析:(1)要用勾股定理解题,首先应具备直角三角形这个必不可少的条件,可本题

△ABC并未说明它是否是直角三角形,所以用勾股定理就没有依据。

(2)若告诉△ABC是直角三角形,第三边C也不一定是满足,题目中并为交待C是斜边

综上所述这个题目条件不足,第三边无法求得。

2、练习P7§1.11

六、作业

课本P7§1.12、3、4

教学目标:

1、经历运用拼图的方法说明勾股定理是正确的过程,在数学活动中发展学生的探究意识和合作交流的习惯。

2、掌握勾股定理和他的简单应用

重点难点:

www.bai huawen.com 重点:能熟练运用拼图的方法证明勾股定理

难点:用面积证勾股定理

教学过程

七、创设问题的情境,激发学生的学习热情,导入课题

我们已经通过数格子的方法发现了直角三角形三边的关系,究竟是几个实例,是否具有普遍的意义,还需加以论证,下面就是今天所要研究的内容,下边请大家画四个全等的直角三角形,并把它剪下来,用这四个直角三角形,拼一拼、摆一摆,看看能否得到一个含有以斜边c为边长的正方形,并与同学交流。在同学操作的过程中,教师展示投影1(书中p7图1—7)接着提问:大正方形的面积可表示为什么?

(同学们回答有这几种可能:(1)(2))

在同学交流形成共识之后,教师把这两种表示大正方形面积的式子用等号连接起来。

=请同学们对上面的式子进行化简,得到:即=

这就可以从理论上说明勾股定理存在。请同学们去用别的拼图方法说明勾股定理。

八、讲例

1、飞机在空中水平飞行,某一时刻刚好飞机飞到一个男孩头顶正上方4000多米处,过20秒,飞机距离这个男孩头顶5000米,飞机每时飞行多少千米?

分析:根据题意:可以先画出符合题意的图形。如右图,图中△ABC的米,AB=5000米,欲求飞机每小时飞行多少千米,就要知道飞机在20秒的时间里的飞行路程,即图中的CB的长,由于直角△ABC的斜边AB=5000米,AC=4000米,这样的CB就可以通过勾股定理得出。这里一定要注意单位的换算。

解:由勾股定理得

即BC=3千米飞机20秒飞行3千米,那么它1小时飞行的距离为:

答:飞机每个小时飞行540千米。

九、议一议

展示投影2(书中的图1—9)

观察上图,应用数格子的方法判断图中的三角形的三边长是否满足

同学在议论交流形成共识之后,老师总结。

勾股定理存在于直角三角形中,不是直角三角形就不能使用勾股定理。

十、作业

1、1、课文P11§1.21、2

2、选用作业。

初一数学上册教案 篇10

【教学目标】

1、经历探索去括号法则的过程,了解去括号法则的依据。

2、会用去括号进行简单的计算。

3、经历观察、归纳等教学活动,培养学生合作精神和探究问题的能力。

【重、难点】

理解去括号法则,熟练运用去括号法则。

【教学过程】

一、情境创设

在假期的勤工俭学活动中,小亮从报社以每份0。4元的价格购进a份报纸,以每份0。5元的价格卖出b份(b≤a)报纸,剩余的报纸以每份0。2元的价格退回报社,小亮赢利多少元?

思考:如何合并你算出的这个代数式中的同类项?

同步测试

1、七年级(1)班男生有a人,女生比男生的2倍少25人,男生比女生的人数多。试回答下列问题。(用代数式来表示,能化简的化简)

(1)女生有多少人?

(2)男生比女生多多少人?

(3)全班共有多少人?

测试

【拓展提优】

14、如果A是三次多项式,B是三次多项式,那么A+B一定是()

A、六次多项式

B、次数不高于3的整式

C、三次多项式

D、次数不低于3的整式

15、多项式(xyz2—4yz—1)+(—3xy+z2xy—3)—(2xyz2+xy)的值()

A、与x、y、z均有关

B、与x有关,而与y、z无关

C、与x、y有关,而与z无关

D、与x、y、z均无关

16、已知a=20xxx+20xx,b=20xxx+20xx,c=20xxx+20xx,那么(a—b)2+(b—c)2+(c—a)2的值等于()

A、4 B、6 C、8 D、10

17、当x=1时,代数式mx3+nx+1的值为20xx,则当x=—1时,代数式mx3+nx+1的值为()

A、—20xx B、—20xx C、—20xx D、—20xx

18、若M=3a2—2ab—4b2,N=4a2+5ab—b2,则8a2—13ab—15b2等于()

A、2M—N B、3M—2N C、4M—N D、2M—3N

19、把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m cm,宽为n cm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示。则图②中两块阴影部分的周长和是()

A、4m cm B、4n cm

C、2(m+n)cm D、4(m—n)cm