首页 > 教学教案 > 初中教案 > 初中数学教案15篇正文

《初中数学教案15篇》

时间:

作为一名人民教师,常常需要准备教案,教案是备课向课堂教学转化的关节点。写教案需要注意哪些格式呢?下面是小编收集整理的初中数学教案,欢迎大家借鉴与参考,希望对大家有所帮助。

初中数学教案1

4.1二元一次方程

【教学目标】

知识与技能目标

1、通过与一元一次方程的比较,能说出二元一次方程的概念,并会辨别一个方程是不是

二元一次方程;

2、通过探索交流,会辨别一个解是不是二元一次方程的解,能写出给定的二元一次方程的解,了解方程解的不唯一性;

3、会将一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。过程与方法目标经历观察、比较、猜想、验证等数学学习活动,培养分析问题的能力和数学说理能力;

情感与态度目标

1、通过与一元一次方程的类比,探究二元一次方程及其解的概念,进一步培养运用类比转化的思想解决问题的能力;

2、通过对实际问题的分析,培养关注生活,进一步体会方程是刻画现实世界的有效数学模型,培养良好的数学应用意识。

【重点、难点】

重点:二元一次方程的概念及二元一次方程的解的概念。

难点1、了解二元一次方程的解的不唯一性和相关性。即了解二元一次方程的解有无数个,

但不是任意的两个数是它的解。

2、把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。

教学方法与教学手段】

1、通过创设问题情境,让学生在寻求问题解决的过程中认识二元一次方程,了解二元一

次方程的特点,体会到二元一次方程的引入是解决实际问题的需要。

2、通过观察、思考、交流等活动,激发学习情绪,营造学习气氛,给学生一定的时间和

空间,自主探讨,了解二元一次方程的解的不唯一性和相关性。

3、通过学练结合,以游戏的形式让学生及时巩固所学知识。

【教学过程】

一、创设情境导入新课

1、一个数的3倍比这个数大6,这个数是多少?

2、写有数字5的黄卡和写有数字2的蓝卡若干张,问黄卡和蓝卡各取几张,才能使取到的卡片上的数字之和为22?

思考:这个问题中,有几个未知数?能列一元一次方程求解吗?

如果设黄卡取x张,蓝卡取y张,你能列出方程吗?

3、在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米。如果设轿车的速度是a千米/时,卡车的速度是b千米/时,你能列出怎样的方程?

二、师生互动探索新知

1、推陈出新发现新知

引导学生观察所列的方程:5x?2y?22,2a?3b?20,这两个方程有哪些共同特征?这些特征与一元一次方程比较,哪些是相同的,哪些是不同的?你能给它们取个名字吗?

(板书:二元一次方程)

根据它们的共同特征,你认为怎样的方程叫做二元一次方程?(二元一次方程的定义:含有两个未知数,且含有未知数的项的次数都是一次的方程叫做二元一次方程。)

2、小试牛刀巩固新知

判断下列各式是不是二元一次方程

(1)x2?y?0(2)12a?b?2b?0(3)y?x(4)x??123y

3、师生互动再探新知

(1)什么是方程的解?(使方程两边的值相等的未知数的值,叫做方程的解。)

(2)你能给二元一次方程的解下一个定义吗?(使二元一次方程两边的值相等的一对未

知数的值,叫做二元一次方程的一个解。)

?若未知数设为x,y,记做x?,若未知数设为a,b,记做

?y?

4、再试牛刀检验新知

(1)检验下列各组数是不是方程2a?3b?20的解:(学生感悟二元一次方程解的不唯一性)

a?4a?5a?0a?100

b?3b??1020b??b?6033

(2)你能写出方程x-y=1的一个解吗?(再一次让学生感悟二元一次方程的解的不唯一性)

5、自我挑战三探新知

有3张写有相同数字的蓝卡和2张写有相同数字的黄卡,这五张卡片上的数字之和为10。设蓝卡上的数字为x,黄卡上的数字为y,根据题意列方程。3x?2y?10

请找出这个方程的一个解,并写出你得到这个解的过程。

学生在解二元一次方程的过程中体验和了解二元一次方程解的不唯一性。

6、动动笔头巩固新知

独立完成课本第81页课内练习2

三、你说我说清点收获

比较一元一次方程和二元一次方程的相同点和不同点

相同点:方程两边都是整式

含有未知数的项的次数都是一次

如何求一个二元一次方程的解

四、知识巩固

1、必答题

(1)填空题:若mxy?9x?3yn?1?7是关于x,y的二元一次方程,则m?n?x?2y?5变形正确的有2

10?xx?10①x?5?4y②x?10?4y③y?④y?44

(3x?7是方程2x?y?15的解。()(2)多选题:方程

y?1

x?7

(4)判断题:方程2x?y?15的解是。()y?1

2、抢答题

是方程2x?3y?5的一个解,求a的值。(1)已知x??2

y?a

(2)写出一个解为x?3的二元一次方程。

y?1

3、个人魅力题

写有数字5的黄卡和写有数字2的蓝卡若干张,问黄卡和蓝卡各取几张,才能使取到的卡片上的数字之和为22?设黄卡取x张,蓝卡取y张,根据题意列方程:5x?2y?22你能完成这道题目吗?

五、布置作业

初中数学教案2

教学目标

1.知识与技能

能运用运算律探究去括号法则,并且利用去括号法则将整式化简.

2.过程与方法

经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力.

3.情感态度与价值观

培养学生主动探究、合作交流的意识,严谨治学的学习态度.

重、难点与关键

1.重点:去括号法则,准确应用法则将整式化简.

2.难点:括号前面是“-”号去括号时,括号内各项变号容易产生错误.

3.关键:准确理解去括号法则.

教具准备

投影仪.

教学过程

一、新授

利用合并同类项可以把一个多项式化简,在实际问题中,往往列出的式子含有括号,那么该怎样化简呢?

现在我们来看本章引言中的问题(3):

在格尔木到拉萨路段,如果列车通过冻土地段要t小时,那么它通过非冻土地段的时间为(t-0.5)小时,于是,冻土地段的路程为100t千米,非冻土地段的路程为120(t-0.5)千米,因此,这段铁路全长为

100t+120(t-0.5)千米①

冻土地段与非冻土地段相差

100t-120(t-0.5)千米②

上面的式子①、②都带有括号,它们应如何化简?

思路点拨:教师引导,启发学生类比数的运算,利用分配律.学生练习、交流后,教师归纳:

利用分配律,可以去括号,合并同类项,得:

100t+120(t-0.5)=100t+120t+120×(-0.5)=220t-60

100t-120(t-0.5)=100t-120t-120×(-0.5)=-20t+60

我们知道,化简带有括号的整式,首先应先去括号.

上面两式去括号部分变形分别为:

+120(t-0.5)=+120t-60③

-120(t-0.5)=-120+60④

比较③、④两式,你能发现去括号时符号变化的规律吗?

思路点拨:鼓励学生通过观察,试用自己的语言叙述去括号法则,然后教师板书(或用屏幕)展示:

如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;

如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.

特别地,+(x-3)与-(x-3)可以分别看作1与-1分别乘(x-3).

利用分配律,可以将式子中的括号去掉,得:

+(x-3)=x-3(括号没了,括号内的每一项都没有变号)

-(x-3)=-x+3(括号没了,括号内的每一项都改变了符号)

去括号规律要准确理解,去括号应对括号的每一项的符号都予考虑,做到要变都变;要不变,则谁也不变;另外,括号内原有几项去掉括号后仍有几项.

二、范例学习

例1.化简下列各式:

(1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b).

思路点拨:讲解时,先让学生判定是哪种类型的去括号,去括号后,要不要变号,括号内的每一项原来是什么符号?去括号时,要同时去掉括号前的符号.为了防止错误,题(2)中-3(a2-2b),先把3乘到括号内,然后再去括号.

解答过程按课本,可由学生口述,教师板书.

例2.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50千米/时,水流速度是a千米/时.

(1)2小时后两船相距多远?

(2)2小时后甲船比乙船多航行多少千米?

教师操作投影仪,展示例2,学生思考、小组交流,寻求解答思路.

思路点拨:根据船顺水航行的速度=船在静水中的速度+水流速度,船逆水航行速度=船在静水中行驶速度-水流速度.因此,甲船速度为(50+a)千米/时,乙船速度为(50-a)千米/时,2小时后,甲船行程为2(50+a)千米,乙船行程为(50-a)千米.两船从同一洪口同时出发反向而行,所以两船相距等于甲、乙两船行程之和.

解答过程按课本.

去括号时强调:括号内每一项都要乘以2,括号前是负因数时,去掉括号后,括号内每一项都要变号.为了防止出错,可以先用分配律将数字2与括号内的各项相乘,然后再去括号,熟练后,再省去这一步,直接去括号.

三、巩固练习

1.课本第68页练习1、2题.

2.计算:5xy2-[3xy2-(4xy2-2x2y)]+2x2y-xy2.[5xy2]

思路点拨:一般地,先去小括号,再去中括号.

四、课堂小结

去括号是代数式变形中的一种常用方法,去括号时,特别是括号前面是“-”号时,括号连同括号前面的“-”号去掉,括号里的各项都改变符号.去括号规律可以简单记为“-”变“+”不变,要变全都变.当括号前带有数字因数时,这个数字要乘以括号内的每一项,切勿漏乘某些项.

五、作业布置

1.课本第71页习题2.2第2、3、5、8题.

2.选用课时作业设计.

初中数学教案3

一、教学目标:

1、知识目标:能熟练掌握简单图形的移动规律,能按要求作出简单平面图形平移后的图形,能够探索图形之间的平移关系;

2、能力目标:

①,在实践操作过程中,逐步探索图形之间的平移关系;

②,对组合图形要找到一个或者几个“基本图案”,并能通过对“基本图案”的平移,复制所求的图形;

3、情感目标:经历对图形进行观察、分析、欣赏和动手操作、画图等过程,发展初步的审美能力,增强对图形欣赏的意识。

二、重点与难点:

重点:图形连续变化的特点;

难点:图形的划分。

三、教学方法:

讲练结合。使用多媒体课件辅助教学。

四、教具准备:

多媒体、磁性板,若干小正六边形,“工”字的砖,组合图形。

五、教学设计

创设情景,探究新知:

(演示课件):教材上小狗的图案。提问:

(1)这个图案有什么特点?

(2)它可以通过什么“基本图案”,经过怎样的平移而形成?

(3)在平移过程中,“基本图案”的大小、形状、位置是否发生了变化?

小组讨论,派代表回答。(答案可以多种)

让学生充分讨论,归纳总结,老师给予适当的指导,并对每种答案都要肯定。

看磁性黑板,展示教材64页图3-9,提问:左图是一个正六边形,它经过怎样的平移能得到右图?谁到黑板做做看?

小组讨论,派代表到台上给大家讲解。

气氛要热烈,充分调动学生的积极性,发掘他们的想象力。

畅所欲言,互相补充。

课堂小结:

在教师的引导下学生总结本节课的主要内容,并启发学生在我们周围寻找平移的例子。

课堂练习:

小组讨论。

小组讨论完成。

例子一定要和大家接触紧密、典型。

答案不惟一,对于每种答案,教师都要给予充分的肯定。

六、教学反思

本节的内容并不是很复杂,借助多媒体进行直观、形象,内容贴近生活,学生兴致较高,课堂气氛活跃,参与意识较强,学生一般都能在教师的指导下掌握。教学过程中渗透数学美学思想,促进学生综合素质的提高。

初中数学教案4

一、教材分析

本节内容是人民教育出版社出版《义务教育课程实验教科书(五四学制)数学》(供天津用)八年级下册第十章整式第一节整式加减第2小节整式的加减。

二、设计思想

本节内容是学生掌握了“整式”有关概念的延展学习,为后继学习整式运算、因式分解、一元二次方程及函数知识奠定基础,是“数”向“式”的正式过度,具有十分重要地位。

八年级学生已具有了较强的数的运算技能和“合并”的意识(解一元一次方程中用)同时也具有初步的观察、归纳、探索的技能。因此,我结合教材,立足让每个学生都有发展的宗旨,我采用合作探究的学习方式开展教学活动,通过设计有针对性、多样式的问题引导学生,给学生提供充足的、和谐的探索空间让学生学习。通过学习活动不但培养学生化简意识,提升数学运算技能而且让学生深刻体会到数学是解决实际问题的重要工具,增强应用数学的意识。

三、教学目标:

(一)知识技能目标:

1、理解同类项的含义,并能辨别同类项。

2、掌握合并同类项的方法,熟练的合并同类项。

3、掌握整式加减运算的方法,熟练进行运算。

(二)过程方法目标:

1、通过探究同类项定义、合并同类项的方法的活动,培养学生观察、归纳、探究的能力。

2、通过合并同类项、整式加减运算的练习活动,提高学生运算技能,提升运算的准确率培养学生化简意识,发展学生的抽象概括能力。

3、通过研究引例、探究例1的活动,发展学生的形象思维,初步培养学生的符号感。

(三)情感价值目标:

1、通过交流协商、分组探究,培养学生合作交流的意识和敢于探索未知问题的精神。

2、通过学习活动培养学生科学、严谨的学习态度。

四、教学重、难点:

合并同类项

五、教学关键:

同类项的概念

六、教学准备:

教师:

1、筛选数学题目,精心设置问题情境。

2、制作大小不等的两个长方体纸盒实物模型,并能展开。

3、设计多媒体教学课件。(要凸显①单项式中系数、字母、指数的特征②长方体纸盒立体图、展开图。)

学生:

1、复习有关单项式的概念、有理数四则运算及去括号的法则)

2、每小组制作大小不等的两个长方体纸盒模型。

初中数学教案5

初中数学分层教学的理论与实践

天山六中裴焕民

一、分层教学的含义

分层教学是指教师在学生知识基础、智力因素存在明显差异的情况下,有区别地设计教学环节进行教学,遵循因材施教的原则,有针对性地实施对不同类别学生的学习指导,不仅根据学生的`不同选择不同的教法、布置作业,还因材施“助”、因材施“改”、因材施“教”,使每个学生都能在原有的基础上得以发展,从而达到不同类别的教学目标的一种教学方法。

分层教学是“着眼于与学生的可持续性的、良性的发展”的教育观念下的一种教学实施策略。所谓分层教学(同班、同年级分层次教学)就是教师在教授同一教学内容时,对同一个班内不同知识水平和接受能力的优、中、差生以相应的三个层次的教学深度和广度进行合讲分练,做到课堂教学有的放矢,区别对待,使每个学生都在自己原来的基础上学有所得,思有所进,在不同程度上有所提高,同步发展。教师的教学方法应从最低点起步,分类指导,逐步推进,做到“分合”有序,动静结合,并分层设计练习,分层设计课堂,分层布置作业,引导学生全员参与,各得进步。

二、分层教学必要性分析

1、教学现状呼唤分层教学的实施

义务教育的实施使小学毕业生全部升入初中学习,这样,在同一班里,学生的知识、能力参差不齐。但是,应试教育留下的种种弊端抑制了各层次的学生的学习积极性和兴趣,整齐划一的教学要求,忽视了学生之间的差异。为了使教育面向全体学生,减轻部分学生过重的负担,使他们在原有的基础上有所提高,全面提高教学质量,又要使有特长的学生得到更进一步的发展。因此必须实施因材施教,根据不同的学生的具体情况,确立不同的教学目标,采取不同的教学方法,使其个性得到充分发展,为社会培养各种层次的有用之人。

2、新课程改革呼唤分层教学的实施

数学课程改革的核心是课程的实施,而教学是课程实施的基本途径。课程改革归根到底是要转变教师的传统教学观念:包括教学方式的转变——从“教”到

“引”;知识技能掌握理念的转变——从“满堂灌”、“书山题海”到“在亲身经历中体会、理解、掌握知识技能”,强调自我的情感体验;教材观的转变——从“教教材”到“用教材”,教材变成我们引导学生探究知识的工具之一;评价机制的转变——从“唯分数论”到“适合学生自身特点的发展”,这是实施分层教学的原动力,但也是现今新课程改革的一个难点。

在新课改中实施分层教学法的目的是逐步树立学困生学习的信心,激发中等生的学习潜力,扩大优生的学习面。为了适应当前素质教育的需要,我们要采用针对性的矫正和帮助,进行分层教学,分类指导,及时反馈,从中探索出一条教学改革的新路子。

3、学生个体差异的客观存在

心理学的研究结果表明:学生的学习能力差异是存在的,特别是学生在数学学习能力方面存在着较大的差异这已是一个不争的事实。造成差异的原因有很多,学生的先天遗传因素及环境、教育条件都有所不同,还有社会因素(即环境、教育条件、科学训练),这些原因是对学生学习能力的形成起着决定性作用,所以学生所表现出的数学能力有明显差异也是正常的。

学生作为一个群体,存在着个体差异

(1)智力差异。每个学生因为遗传基因的不同,智力的差异是不可避免的。有的人聪明;有的人愚钝,有的人形象思维强;有的逻辑思维强;有的人记忆力超人,但推理能力较差;有的人记忆力较差,却推理能力过人。

(2)学习基础差异。不同的学生在小学的数学状况不一样:有的学生数学十分优秀,有的学生数学学习基本还没入门,两极分化相当严重。

(3)学习品质差异。有的学生学习数学十分认真,有一套自己的数学学习方法,学得轻松愉快;而有的学生因为没有入门,数学学得十分艰难,部分学生甚至对数学学习丧失了信心。

4、分层次教学符合因材施教的原则

目前我国大部分省市的数学教学采用的是统一教材、统一课时、统一教参,在学生学习能力存在差异的情况下,在教学过程中往往容易产全“顾中间、丢两头”。如不因材施教,就使部分学生就成了陪读、陪考。数学能力强的学生潜能得不到充分发挥,能力稍差的学生就可能变成了后进生。有研究结果表明:教师、

家庭、社会、学生、学校等方面的因素都有可能是形成后进生的原因,其中有50%的原因是来自教师在教学中的失误。我们的基础教育既要注意确保学生的共性需求,又要顾及学生的个性发展,所以进行分层教育确有必要。

5、分层次教学能够有效推动教学过程的展开

按照教育家达尼洛夫关于教学过程的动力理论之说,认为只有学生学习的可能性与对他们的要求是一致的,才可能推动教学过程的展开,从而加快学习成绩的提高,而这两者的统一关系若被破坏,就会造成学业的不良后果。学生的学习可能是由他们生理和心理的一般发展水平与对某项学习的具体准备状态所决定的,学生学习可能性的构成因素中既有相对稳定的因素,又有易变的因素。相对稳定的因素,决定了学生在一段时间内可能达到的学习水平的范围,决定了学业不良学生要取得学业进步只能是一个渐进的过程;易变的因素,使学生能在:一定的主客观条件下提高或降低自己的实际可能性水平,从而促进或阻碍学习可能性与教学要求之间矛盾的转化,加快学习成绩提高或降低的速度。由此可见,分层次教学是着眼于协调教学要求与学生学习可能性的关系的一种极好的手段,使它们之间能相适应,从而推动教学过程的展开。

三、分层教学研究的目的意义

捷克教育家夸美纽斯在十七世纪提出来的班级授课制以其大大提高教学效率、加强学校工作的计划性和实际社会效益风行了三百多年后,其固有的不利于学生创造能力的培养和因材施教等种种弊端与社会发展对教育的要求的矛盾越来越尖锐起来。随着科学技术的发展,社会日益进步,教育资源和教育需求的增长和变化,班级授课制在我国做出辉煌的贡献后逐步显现出其先天的严重不足。教师在班级授课制下对能力强的学生“吃不饱”,能力欠佳的学生“吃不消”普遍感到力不从心。分层教学在这种情况下应运而生,成为优化单一班级授课制的有利途径。

1.有利于所有学生的提高:分层教学法的实施,避免了部分学生在课堂上完成作业后无所事事,同时,所有学生都体验到学有所成,增强了学习信心。

2.有利于课堂效率的提高:首先,教师事先针对各层学生设计了不同的教学目标与练习,使得处于不同层的学生都能“摘到桃子”,获得成功的喜悦,这极大地优化了教师与学生的关系,从而提高师生合作、交流的效率;其次,教师在

备课时事先估计了在各层中可能出现的问题,并做了充分的准备,使得实际施教更有的放矢、目标明确、针对性强,增大了课堂教学的容量。总之,通过这一教学法,有利于提高课堂教学的质量和效率。

3.有利于教师全面能力的提升:通过有效地组织好对各层学生的教学,灵活地安排不同的层次策略,极大地锻炼了教师的组织调控与随机应变能力。分层教学本身引出的思考和学生在分层教学中提出来的挑战都有利于教师能力的全面提升。

四、分层教学的理论基础

1、掌握学习理论

布鲁姆提出的“掌握学习理论”主张:“给学生足够的学习时间,同时使他们获得科学的学习方法,通过他们自己的努力,应该都可以掌握学习内容”。“不同学生需要用不同的方法去教,不同学生对不同的教学内容能持久地集中注意力”。为了实现这个目标,就应该采取分层教学的方法。

2、教学最优化理论

巴班斯基的“教学最优化理论”的核心是:教学过程的最优化是选择一种能使教师和学生在花费最少的必要时间和精力的情况下获得最好的教学效果的教学方案并加以实施。分层教学是实现这一目标的有效方式之一。

3、新课标的基本理念

《数学课程标准》提出了一种全新的数学课程理念:“人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展”。面向全体学生,体现了义务教育的基础性、普及性和发展性。不仅为数学教学内容的设定指出方向,而且考虑到学生的可持续发展对数学的需求,并为学生学习数学可能产生的差异性留有充分的余地。

五、分层教学实施的指导思想及原则

首先,分层次教学的主体是班级教学为主,按层次教学为辅,层次分得好坏直接影响到“分层次教学”的成功与否。其指导思想是变传统的应试教育为素质教育,是成绩差异的分层,而不是人格的分层。为了不给差生增加心理负担,必须做好分层前的思想工作,了解学生的心理特点,讲情道理:学习成绩的差异是客观存在的,分层次教学的目的不是人为地制造等级,而是采用不同的方法帮助

他们提高学习成绩,让不同成绩的学生最大限度地发挥他们的潜力,以逐步缩小差距,达到班级整体优化。

在对学生进行分层要坚持尊重学生,师生磋商,动态分层的原则。应该向学生宣布分层方案的设计,讲清分层的目的和意义,以统一师生认识;指导每位学生实事求是地估计自己,通过学生自我评估,完全由学生自己自愿选择适应自己的层次;最后,教师根据学生自愿选择的情况进行合理性分析,若有必要,在征得学生同意的基础上作个别调整之后,公布分层结果。这样使部分学生既分到了合适的层次上,又保留了“脸面”,自尊心也不至于受到伤害,也提高了学生学习数学的兴趣。

其次,在分层教学中应注意下列原则的使用:

①水平相近原则:在分层时应将学习状况相近的学生归为“同一层”;

②差别模糊原则:分层是动态的、可变的,有进步的可以“升级”,退步的应“转级”,且分层结果不予公布;

③感受成功原则:在制定各层次教学目标、方法、练习、作业时,应使学生跳一跳,才可摘到苹果为宜,在分层中感受到成功的喜悦;

④零整分合原则:教学内容的合与分,对学生的“放”与“扶”,以及课外的分层辅导都应遵守这个原则;

⑤调节控制原则:由于各层次学生要求不一,因此在课堂上以学、议为主,教师要善于激趣、指导、精讲、引思,调节并控制止好各层次学生的学习,做好分类指导;

⑥积极激励原则:对各层次学生的评价,以纵向性为主。教师通过观察、反馈信息,及时表扬激励,对进步大的学生及时调到高一层次,相对落后的同意转层。从而促进各层学生学习的积极性,使所有学生随时都处于最佳的学习状态。

六、实施分层教学的策略与措施

(一)分层建组

把学生分层编组是实施分层教学、分类指导的基础。学生的分类应遵循“多维性原则、自愿性原则和动态性原则”,教师通过对全班学生平时的数学学习的智能,技能、心理、成绩、在校表现、家庭环境等,并对所获得的数据资料进行综合分析,分类归档。在此基础上,将学生分成好、中、差层次的学习小组,让

初中数学教案6

【学习目标】

1.了解圆周角的概念.

2.理解圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.

3.理解圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90的圆周角所对的弦是直径.

4.熟练掌握圆周角的定理及其推理的灵活运用.

设置情景,给出圆周角概念,探究这些圆周角与圆心角的关系,运用数学分类思想给予逻辑证明定理,得出推导,让学生活动证明定理推论的正确性,最后运用定理及其推导解决一些实际问题

【学习过程】

一、 温故知新:

(学生活动)同学们口答下面两个问题.

1.什么叫圆心角?

2.圆心角、弦、弧之间有什么内在联系呢?

二、 自主学习:

自学教材P90---P93,思考下列问题:

1、 什么叫圆周角?圆周角的两个特征: 。

2、 在下面空里作一个圆,在同一弧上作一些圆心角及圆周角。通过圆周角的概念和度量的方法回答下面的问题.

(1)一个弧上所对的圆周角的个数有多少个?

(2).同弧所对的圆周角的度数是否发生变化?

(3).同弧上的圆周角与圆心角有什么关系?

3、默写圆周角定理及推论并证明。

4、能去掉同圆或等圆吗?若把同弧或等弧改成同弦或等弦性质成立吗?

5、教材92页思考?在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等吗?为什么?

三、 典型例题:

例1、(教材93页例2)如图, ⊙O的直径AB为10cm,弦AC为6cm,,ACB的平分线交⊙O于D,求BC、AD、BD的长。

例2、如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?为什么?

四、 巩固练习:

1、(教材P93练习1)

解:

2、(教材P93练习2)

3、(教材P93练习3)

证明:

4、(教材P95习题24.1第9题)

五、 总结反思:

【达标检测】

1.如图1,A、B、C三点在⊙O上,AOC=100,则ABC等于( ).

A.140 B.110 C.120 D.130

(1) (2) (3)

2.如图2,1、2、3、4的大小关系是( )

A.3 B.32

C.2 D.2

3.如图3,(中考题)AB是⊙O的直径,BC,CD,DA是⊙O的弦,且BC=CD=DA,则BCD等于( )

A.100 B.110 C.120 D.130

4.半径为2a的⊙O中,弦AB的长为2 a,则弦AB所对的圆周角的度数是________.

5.如图4,A、B是⊙O的直径,C、D、E都是圆上的点,则2=_______.

(4) (5)

6.(中考题)如图5, 于 ,若 ,则

7.如图,弦AB把圆周分成1:2的两部分,已知⊙O半径为1,求弦长AB.

【拓展创新】

1.如图,已知AB=AC,APC=60

(1)求证:△ABC是等边三角形.

(2)若BC=4cm,求⊙O的面积.

3、教材P95习题24.1第12、13题。

【布置作业】教材P95习题24.1第10、11题。

初中数学教案7

一、内容特点

在知识与方法上类似于数系的第一次扩张。也是后继内容学习的基础。

内容定位:了解无理数、实数概念,了解(算术)平方根的概念;会用根号表示数的(算术)平方根,会求平方根、立方根,用有理数估计一个无理数的大致范围,实数简单的四则运算(不要求分母有理化)。

二、设计思路

整体设计思路:

无理数的引入----无理数的表示----实数及其相关概念(包括实数运算),实数的应用贯穿于内容的始终。

学习对象----实数概念及其运算;学习过程----通过拼图活动引进无理数,通过具体问题的解决说明如何表示无理数,进而建立实数概念;以类比,归纳探索的方式,寻求实数的运算法则;学习方式----操作、猜测、抽象、验证、类比、推理等。

具体过程:

首先通过拼图活动和计算器探索活动,给出无理数的概念,然后通过具体问题的解决,引入平方根和立方根的概念和开方运算。最后教科书总结实数的概念及其分类,并用类比的方法引入实数的相关概念、运算律和运算性质等。

第一节:数怎么又不够用了:通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性;借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想;会判断一个数是有理数还是无理数。

第二、三节:平方根、立方根:如何表示正方形的边长?它的值到底是多少?并引入算术平方根、平方根、立方根等概念和开方运算。

第四节:公园有多宽:在实际生活和生产实际中,对于无理数我们常常通过估算来求它的近似值,为此这一节内容介绍估算的方法,包括通过估算比较大小,检验计算结果的合理性等,其目的是发展学生的数感。

第五节:用计算器开方:会用计算器求平方根和立方根。经历运用计算器探求数学规律的活动,发展合情推理的能力。

第六节:实数。总结实数的概念及其分类,并用类比的方法引入实数的相关概念、运算律和运算性质等。

三、一些建议

1.注重概念的形成过程,让学生在概念的形成的过程中,逐步理解所学的概念;关注学生对无理数和实数概念的意义理解。

2.鼓励学生进行探索和交流,重视学生的分析、概括、交流等能力的考察。

3.注意运用类比的方法,使学生清楚新旧知识的区别和联系。

4.淡化二次根式的概念。

初中数学教案8

一、指导思想

教育教学工作是一个头绪众多的系统工程,在纷繁的头绪中需要各项工作有序进展,尤为重要的是强化常规,做好细节,教学常规是对学校教学工作的基本要求,落实教学常规是学校教学工作得以正常有序开展的根本保证。只有搞好教学常规才有可能获得成功的教育。教师教学水平的高低体现于教学各个步骤的细节中,空洞地谈教学能力是苍白的,只有用教师的备课情况、讲课细节、作业批改情况。教学常规培养着教师的基本功,决定着教师的教学能力,可以说教师的教学水平就是在这些常规细节中培养起来。

二、检查反馈

本次检查大多数教师都比较重视,检查内容完整、全面。现将检查情况总结如下教案方面的特点与不足。

特点:

1、绝大多数教案设计完整,教学重点、难点突出,设置得当,紧紧围绕新课标,例如:刘兴华、孙菊、江文等能突出对学科素养的高度关注。教师撰写的课后反思能体现教师对教材处理的新方法,能侧重对自己教法和学生学法的指导,并且还能对自己不得法的教学手段、方式、方法进行深刻地解剖,能很好地体现课堂教学的反思意识,反思深刻、务实、有针对性。

2、教学环节齐全,注重引语与小结,使教学设计前后呼应,环节完整。

3、注重选择恰当的教学方法,注重在灵活多样的教学方法中培养学生的合作意识和创新精神。

4、教案能体现多媒体教学手段,注重培养学生的探究精神和创新能力。

不足:

1、教案后的教学反思不够认真、不够详细,没能对本堂课的得与失作出记录与小结,从中也可以看出我们对课后反思还不够重视。

2、个别教师教案过于简单。

作业方面的特点与不足

特点:

1、能按进度布置作业,作业设置量度适中,难易适中,上交率较高,且都能做到全批全改。

2、作业批改公平、公正,有一定的等级评定。教师批改要求严格、细致,能够反映学生作业中的错误做法及纠正措施。

不足:

1、对于学生书写的工整性,还需加强教育。

2、教师在批阅作业时,要稍细心些,发现问题就让学生当时改正,学生也就会逐渐养成做事认真的习惯。

初中数学教案9

教学目标

1.使学生正确理解的意义,掌握的三要素;

2.使学生学会由上的已知点说出它所表示的数,能将有理数用上的点表示出来;

3.使学生初步理解数形结合的思想方法.

教学重点和难点

重点:初步理解数形结合的思想方法,正确掌握画法和用上的点表示有理数.

难点:正确理解有理数与上点的对应关系.

课堂教学过程 设计

一、从学生原有认知结构提出问题

1.小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?

2.用“射线”能不能表示有理数?为什么?

3.你认为把“射线”做怎样的改动,才能用来表示有理数呢?

待学生回答后,教师指出,这就是我们本节课所要学习的内容——.

二、讲授新课

让学生观察挂图——放大的温度计,同时教师给予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度.在0上10个刻度,表示10℃;在0下5个刻度,表示-5℃.

与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(边说边画):

1.画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);

2.规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负);

3.选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,…

提问:我们能不能用这条直线表示任何有理数?(可列举几个数)

在此基础上,给出的定义,即规定了原点、正方向和单位长度的直线叫做.

进而提问学生:在上,已知一点P表示数-5,如果上的原点不选在原来位置,而改选在另一位置,那么P对应的数是否还是-5?如果单位长度改变呢?如果直线的正方向改变呢?

通过上述提问,向学生指出:的三要素——原点、正方向和单位长度,缺一不可.

三、运用举例 变式练习

例1 画一个,并在上画出表示下列各数的点:

例2 指出上A,B,C,D,E各点分别表示什么数.

课堂练习

示出来.

2.说出下面上A,B,C,D,O,M各点表示什么数?

最后引导学生得出结论:正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,零用原点表示.

四、小结

指导学生阅读教材后指出:是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法.

本节课要求同学们能掌握的三要素,正确地画出,在此还要提醒同学们,所有的有理数都可用上的点来表示,但是反过来不成立,即上的点并不是都表示有理数,至于上的哪些点不能表示有理数,这个问题以后再研究.

五、作业

1.在下面上:

(1)分别指出表示-2,3,-4,0,1各数的点.

(2)A,H,D,E,O各点分别表示什么数?

2.在下面上,A,B,C,D各点分别表示什么数?

3.下列各小题先分别画出,然后在上画出表示大括号内的一组数的点:

(1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5};

初中数学教案10

教学目标

1.经历不同的拼图方法验证公式的过程,在此过程中加深对因式分解、整式运算、面积等的认识。

2.通过验证过程中数与形的结合,体会数形结合的思想以及数学知识之间内在联系,每一部分知识并不是孤立的。

3.通过丰富有趣的拼图活动,经历观察、比较、拼图、计算、推理交流等过程,发展空间观念和有条理地思考和表达的能力,获得一些研究问题与合作交流方法与经验。

4.通过获得成功的体验和克服困难的经历,增进数学学习的信心。通过丰富有趣拼的图活动增强对数学学习的兴趣。

重点1.通过综合运用已有知识解决问题的过程,加深对因式分解、整式运算、面积等的认识。

2.通过拼图验证公式的过程,使学习获得一些研究问题与合作交流的方法与经验。

难点利用数形结合的方法验证公式

教学方法动手操作,合作探究课型新授课教具投影仪

教师活动学生活动

情景设置:

你已知道的关于验证公式的拼图方法有哪些?(教师在此给予学生独立思考和讨论的时间,让学生回想前面拼图。)

新课讲解:

把几个图形拼成一个新的图形,再通过图形面积的计算,常常可以得到一些有用的式子。美国第二十任总统伽菲尔德就由这个图(由两个边长分别为a、b、c的直角三角形和一个两条直角边都是c的直角三角形拼成一个新的图形)得出:c2=a2+b2他的证法在数学史上被传为佳话。他是这样分析的,如图所示:

教师接着在介绍教材第94页例题的拼法及相关公式

提问:还能通过怎样拼图来解决以下问题

(1)任意选取若干块这样的硬纸片,尝试拼成一个长方形,计算它的面积,并写出相应的等式;

(2)任意写出一个关于a、b的二次三项式,如a2+4ab+3b2

试用拼一个长方形的方法,把这个二次三项式因式分解。

这个问题要给予学生充足的时间和空间进行讨论和拼图,教师在这要引导适度,不要限制学生思维,同时鼓励学生在拼图过程中进行交流合作

了解学生拼图的情况及利用自己的拼图验证的情况。教师在巡视过程中,及时指导,并让学生展示自己的拼图及让学生讲解验证公式的方法,并根据不同学生的不同状况给予适当的引导,引导学生整理结论。

小结:

从这节课中你有哪些收获?

(教师应给予学生充分的时间鼓励学生畅所欲言,只要是学生的感受和想法,教师要多鼓励、多肯定。最后,教师要对学生所说的进行全面的总结。)

学生回答

a(b+c+d)=ab+ac+ad

(a+b)(c+d)=ac+ad+bc+bd

(a+b)2=a2+2ab+b2

学生拿出准备好的硬纸板制作

给学生充分的时间进行拼图、思考、交流经验,对于有困难的学生教师要给予适当引导。

作业第95页第3题

板书设计

复习例1板演

………………

………………

……例2……

………………

………………

教学后记

初中数学教案11

教学目标

1.使学生在了解代数式概念的基础上,能把简单的与数量有关的词语用代数式表示出来;

2.初步培养学生观察、分析和抽象思维的能力.

教学重点和难点

重点:列代数式.

难点:弄清楚语句中各数量的意义及相互关系.

课堂教学过程设计

一、从学生原有的认知结构提出问题

1庇么数式表示乙数:(投影)

(1)乙数比x大5;(x+5)

(2)乙数比x的2倍小3;(2x-3)

(3)乙数比x的倒数小7;(-7)

(4)乙数比x大16%((1+16%)x)

(应用引导的方法启发学生解答本题)

2痹诖数里,我们经常需要把用数字或字母叙述的一句话或一些计算关系式,列成代数式,正如上面的练习中的问题一样,这一点同学们已经比较熟悉了,但在代数式里也常常需要把用文字叙述的一句话或计算关系式(即日常生活语言)列成代数式北窘诳挝颐蔷屠匆黄鹧习这个问题

二、讲授新课

例1用代数式表示乙数:

(1)乙数比甲数大5;(2)乙数比甲数的2倍小3;

(3)乙数比甲数的倒数小7;(4)乙数比甲数大16%

分析:要确定的乙数,既然要与甲数做比较,那么就只有明确甲数是什么之后,才能确定乙数,因此写代数式以前需要把甲数具体设出来,才能解决欲求的乙数

解:设甲数为x,则乙数的代数式为

(1)x+5(2)2x-3;(3)-7;(4)(1+16%)x

(本题应由学生口答,教师板书完成)

最后,教师需指出:第4小题的答案也可写成x+16%x

例2用代数式表示:

(1)甲乙两数和的2倍;

(2)甲数的与乙数的的差;

(3)甲乙两数的平方和;

(4)甲乙两数的和与甲乙两数的差的积;

(5)乙甲两数之和与乙甲两数的差的积

分析:本题应首先把甲乙两数具体设出来,然后依条件写出代数式

解:设甲数为a,乙数为b,则

(1)2(a+b);(2)a-b;(3)a2+b2;

(4)(a+b)(a-b);(5)(a+b)(b-a)或(b+a)(b-a)

(本题应由学生口答,教师板书完成)

此时,教师指出:a与b的和,以及b与a的和都是指(a+b),这是因为加法有交换律钡玜与b的差指的是(a-b),而b与a的差指的是(b-a)绷秸呙飨圆煌,这就是说,用文字语言叙述的句子里应特别注意其运算顺序

例3用代数式表示:

(1)被3整除得n的数;

(2)被5除商m余2的数

分析本题时,可提出以下问题:

(1)被3整除得2的数是几?被3整除得3的数是几?被3整除得n的数如何表示?

(2)被5除商1余2的数是几?如何表示这个数?商2余2的数呢?商m余2的数呢?

解:(1)3n;(2)5m+2

(这个例子直接为以后让学生用代数式表示任意一个偶数或奇数做准备)

例4设字母a表示一个数,用代数式表示:

(1)这个数与5的和的3倍;(2)这个数与1的差的;

(3)这个数的5倍与7的和的一半;(4)这个数的平方与这个数的的和

分析:启发学生,做分析练习比绲1小题可分解为“a与5的和”与“和的3倍”,先将“a与5的和”例成代数式“a+5”再将“和的3倍”列成代数式“3(a+5)”

解:(1)3(a+5);(2)(a-1);(3)(5a+7);(4)a2+a

(通过本例的讲解,应使学生逐步掌握把较复杂的数量关系分解为几个基本的数量关系,培养学生分析问题和解决问题的能力)

例5设教室里座位的行数是m,用代数式表示:

(1)教室里每行的座位数比座位的行数多6,教室里总共有多少个座位?

(2)教室里座位的行数是每行座位数的,教室里总共有多少个座位?

分析本题时,可提出如下问题:

(1)教室里有6行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?

(2)教室里有m行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?

(3)通过上述问题的解答结果,你能找出其中的规律吗?(总座位数=每行的座位数×行数)

解:(1)m(m+6)个;(2)(m)m个

三、课堂练习

1鄙杓资为x,乙数为y,用代数式表示:(投影)

(1)甲数的2倍,与乙数的的和;(2)甲数的与乙数的3倍的差;

(3)甲乙两数之积与甲乙两数之和的差;(4)甲乙的差除以甲乙两数的积的商

2庇么数式表示:

(1)比a与b的和小3的数;(2)比a与b的差的一半大1的数;

(3)比a除以b的商的3倍大8的数;(4)比a除b的商的3倍大8的数

3庇么数式表示:

(1)与a-1的和是25的数;(2)与2b+1的积是9的数;

(3)与2x2的差是x的数;(4)除以(y+3)的商是y的数

〔(1)25-(a-1);(2);(3)2x2+2;(4)y(y+3)薄

四、师生共同小结

首先,请学生回答:

1痹跹列代数式?2绷写数式的关键是什么?

其次,教师在学生回答上述问题的基础上,指出:对于较复杂的数量关系,应按下述规律列代数式:

(1)列代数式,要以不改变原题叙述的数量关系为准(代数式的形式不唯一);

(2)要善于把较复杂的数量关系,分解成几个基本的数量关系;

(3)把用日常生活语言叙述的数量关系,列成代数式,是为今后学习列方程解应用题做准备币求学生一定要牢固掌握

五、作业

1庇么数式表示:

(1)体校里男生人数占学生总数的60%,女生人数是a,学生总数是多少?

(2)体校里男生人数是x,女生人数是y,教练人数与学生人数之比是1∶10,教练人数是多?

2币阎一个长方形的周长是24厘米,一边是a厘米,

求:(1)这个长方形另一边的长;(2)这个长方形的面积.

学法探究

已知圆环内直径为acm,外直径为bcm,将100个这样的圆环一个接着一个环套环地连成一条锁链,那么这条锁链拉直后的长度是多少厘米?

分析:先深入研究一下比较简单的情形,比如三个圆环接在一起的情形,看有没有规律.

当圆环为三个的时候,如图:

此时链长为,这个结论可以继续推广到四个环、五个环、…直至100个环,答案不难得到:

解:=99a+b(cm)

今天的内容就介绍到这里了。

初中数学教案12

教学目的

1、使学生了解无理数和实数的概念,掌握实数的分类,会准确判断一个数是有理数还是无理数。

2、使学生能了解实数绝对值的意义。

3、使学生能了解数轴上的点具有一一对应关系。

4、由实数的分类,渗透数学分类的思想。

5、由实数与数轴的一一对应,渗透数形结合的思想。

教学分析

重点:无理数及实数的概念。

难点:有理数与无理数的区别,点与数的一一对应。

教学过程

一、复习

1、什么叫有理数?

2、有理数可以如何分类?

(按定义分与按大小分。)

二、新授

1、无理数定义:无限不循环小数叫做无理数。

判断:无限小数都是无理数;无理数都是无限小数;带根号的数都是无理数。

2、实数的定义:有理数与无理数统称为实数。

3、按课本中列表,将各数间的联系介绍一下。

除了按定义还能按大小写出列表。

4、实数的相反数:

5、实数的绝对值:

6、实数的运算

讲解例1,加上(3)若|x|=π(4)若|x-1|= ,那么x的值是多少?

例2,判断题:

(1)任何实数的偶次幂是正实数。( )

(2)在实数范围内,若| x|=|y|则x=y。( )

(3)0是最小的实数。( )

(4)0是绝对值最小的实数。( )

解:略

三、练习

P148 练习:3、4、5、6。

四、小结

1、今天我们学习了实数,请同学们首先要清楚,实数是如何定义的,它与有理数是怎样的关系,二是对实数两种不同的分类要清楚。

2、要对应有理数的相反数与绝对值定义及运算律和运算性质,来理解在实数中的运用。

五、作业

1、P150 习题A:3。

2、基础训练:同步练习1。

初中数学教案13

1.初中数学教案模板

1.课题

填写课题名称(初中代数类课题)

2.教学目标

(1)知识与技能:

通过本节课的学习,掌握......知识,提高学生解决实际问题的能力;

(2)过程与方法:

通过......(讨论、发现、探究)的过程,提高......(分析、归纳、比较和概括)的能力;

(3)情感态度与价值观:

通过本节课的学习,增强学生的学习兴趣,将数学应用到实际生活中,增加学生数学学习的乐趣。

3.教学重难点

(1)教学重点:本节课的知识重点

(2)教学难点:易错点、难以理解的知识点

4.教学方法(一般从中选择3个就可以了)

(1)讨论法

(2)情景教学法

(3)问答法

(4)发现法

(5)讲授法

5.教学过程

(1)导入

简单叙述导入课题的方式和方法(例:复习、类比、情境导出本节课的课题)

(2)新授课程(一般分为三个小步骤)

①简单讲解本节课基础知识点(例:类比一元一次方程的解法,讲解一元一次不等式的解法和步骤)。

②归纳总结该课题中的重点知识内容,尤其对该注意的一些情况设置易错点,进行强调。可以设计分组讨论环节(例:分组讨论一元一次不等式的解法,归纳总结一元一次不等式的方法步骤,设置系数化为一,负号要变号的易错点)。

③拓展延伸,将所学知识拓展延伸到实际题目中,去解决实际生活中的问题(例:设置一元一次不等式的应用题,学生再次体会一元一次不等式解决实际问题,并且再次巩固不等式的解法)。

(3)课堂小结

教师提问,学生回答本节课的收获。

(4)作业提高

布置作业(尽量与实际生活相联系,有所创新)。

6.教学板书

2.初中数学教案格式

课程编码:______________________________________

总学时 / 周学时: /

开课时间: 年 月 日 第 周至第 周

授课年级、专业、班级:___________________________

使用教材:_______________________________________

授课教师:_______________________________________

1.章节名称

2.教学目的

3.课时安排

4.教学重点、难点

5.教学过程(包括教学内容、教师活动、学生活动、教学方法等)

6.复习巩固与作业要求

7.教学环境及教具准备

8.教学参考资料

9.教学后记

3.初中数学教案范文

教学目的

1.通过对多个实际问题的分析,使学生体会到一元一次方程作为实际问题的数学模型的作用。

2.使学生会列一元一次方程解决一些简单的应用题。

3.会判断一个数是不是某个方程的解。

重点、难点

1.重点:会列一元一次方程解决一些简单的应用题。

2.难点:弄清题意,找出“相等关系”。

教学过程

一、复习提问

一本笔记本1.2元。小红有6元钱,那么她最多能买到几本这样的笔记本呢?

解:设小红能买到工本笔记本,那么根据题意,得1.2x=6

因为1.2×5=6,所以小红能买到5本笔记本。

二、新授

问题1:某校初中一年级328名 师生乘车外出春游,已有2辆校车可以乘坐64人,还需租用44座的客车多少辆?(让学生思考后,回答,教师再作讲评)

算术法:(328-64)÷44=264÷44=6(辆)

列方程:设需要租用x辆客车,可得44x+64=328

解这个方程,就能得到所求的结果。

问:你会解这个方程吗?试试看?

问题2:在课外活动中,张老师发现同学们的年龄大多是13岁,就问同学:“我今年45岁,几年以后你们的年龄是我年龄的三分之一?”

通过分析,列出方程:13+x=(45+x)

问:你会解这个方程吗?你能否从小敏同学的解法中得到启发?

把x=3代人方程(2),左边=13+3=16,右边=(45+3)=×48=16,

因为左边=右边,所以x=3就是这个方程的解。

这种通过试验的方法得出方程的解,这也是一种基本的数学思想方法。也可以据此检验一下一个数是不是方程的解。

问:若把例2中的“三分之一”改为“二分之一”,那么答案是多少?动手试一试,大家发现了什么问题?

同样,用检验的方法也很难得到方程的解,因为这里x的值很大。另外,有的方程的解不一定是整数,该从何试起?如何试验根本无法人手,又该怎么办?

三、巩固练习

教科书第3页练习1、2。

四、小结

本节课我们主要学习了怎样列方程解应用题的方法,解决一些实际问题。谈谈你的学习体会

五、作业

教科书第3页,习题6.1第1、3题。

初中数学教案14

教学目标

1笔寡生掌握代数式的值的概念,能用具体数值代替代数式中的字母,求出代数式的值;

2迸嘌学生准确地运算能力,并适当地渗透特殊与一般的辨证关系的思想。

教学重点和难点

重点和难点:正确地求出代数式的值

课堂教学过程设计

一、从学生原有的认识结构提出问题

1庇么数式表示:(投影)

(1)a与b的和的平方;(2)a,b两数的平方和;

(3)a与b的和的50%

2庇糜镅孕鹗龃数式2n+10的意义

3倍杂诘2题中的代数式2n+10,可否编成一道实际问题呢?(在学生回答的基础上,教师打投影)

某学校为了开展体育活动,要添置一批排球,每班配2个,学校另外留10个,如果这个学校共有n个班,总共需多少个排球?

若学校有15个班(即n=15),则添置排球总数为多少个?若有20个班呢?

最后,教师根据学生的回答情况,指出:需要添置排球总数,是随着班数的确定而确定的;当班数n取不同的数值时,代数式2n+10的计算结果也不同,显然,当n=15时,代数式的值是40;当n=20时,代数式的值是50蔽颐墙上面计算的结果40和50,称为代数式2n+10当n=15和n=20时的值闭饩褪潜窘诳挝颐墙要学习研究的内容

二、师生共同研究代数式的值的意义

1庇檬值代替代数式里的字母,按代数式指明的运算,计算后所得的结果,叫做代数式的值

2苯岷仙鲜隼题,提出如下几个问题:

(1)求代数式2x+10的值,必须给出什么条件?

(2)代数式的值是由什么值的确定而确定的?

当教师引导学生说出:“代数式的值是由代数式里字母的取值的确定而确定的”之后,可用图示帮助学生加深印象

然后,教师指出:只要代数式里的字母给定一个确定的值,代数式就有唯一确定的值与它对应

(3)求代数式的值可以分为几步呢?在“代入”这一步,应注意什么呢?

下面教师结合例题来引导学生归纳,概括出上述问题的答案(教师板书例题时,应注意格式规范化)

例1当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值

解:当x=7,y=4,z=0时,

x(2x-y+3z)=7×(2×7-4+3×0)

=7×(14-4)

=70

注意:如果代数式中省略乘号,代入后需添上乘号

例2根据下面a,b的值,求代数式a2-的值

(1)a=4,b=12,(2)a=1,b=1

解:(1)当a=4,b=12时,

a2-=42-=16-3=13;

(2)当a=1,b=1时,

a2-=-=

注意(1)如果字母取值是分数,作乘方运算时要加括号;

(2)注意书写格式,“当……时”的字样不要丢;

(3)代数式里的字母可取不同的值,但是所取的值不应当使代数式或代数式所表示的数量关系失去实际意义,如此例中a不能为零,在代数式2n+10中,n是代数班的个数,n不能取分数最后,请学生总结出求代数值的步骤:①代入数值②计算结果

三、课堂练习

1(1)当x=2时,求代数式x2-1的值;

(2)当x=,y=时,求代数式x(x-y)的值

2钡盿=,b=时,求下列代数式的值:

(1)(a+b)2;(2)(a-b)2

3钡眡=5,y=3时,求代数式的值

答案:1.(1)3;(2);2.(1);(2);3..

四、师生共同小结

首先,请学生回答下面问题:

1北窘诳窝习了哪些内容?

2鼻蟠数式的值应分哪几步?

3痹“代入”这一步应注意什么”

其次,结合学生的回答,教师指出:(1)求代数式的值,就是用数值代替代数式里的字母按照代数式的运算顺序,直接计算后所得的结果就叫做代数式的值;(2)代数式的值是由代数式里字母所取值的确定而确定的.

五、作业

当a=2,b=1,c=3时,求下列代数式的值:(1)c-(c-a)(c-b);

今天的内容就介绍到这里了。

初中数学教案15

一、 教学目标

1、 知识与技能目标

掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。

2、 能力与过程目标

经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。

3、 情感与态度目标

通过学生自己探索出法则,让学生获得成功的喜悦。

二、 教学重点、难点

重点:运用有理数乘法法则正确进行计算。

难点:有理数乘法法则的探索过程,符号法则及对法则的理解。

三、 教学过程

1、 创设问题情景,激发学生的求知欲望,导入新课。

教师:由于长期干旱,水库放水抗旱。每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米?

学生:26米。

教师:能写出算式吗?学生:……

教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题

2、 小组探索、归纳法则

(1)教师出示以下问题,学生以组为单位探索。

以原点为起点,规定向东的方向为正方向,向西的方向为负方向。

① 2 ×3

2看作向东运动2米,×3看作向原方向运动3次。

结果:向 运动 米

2 ×3=

② -2 ×3

-2看作向西运动2米,×3看作向原方向运动3次。

结果:向 运动 米

-2 ×3=

③ 2 ×(-3)

2看作向东运动2米,×(-3)看作向反方向运动3次。

结果:向 运动 米

2 ×(-3)=

④ (-2) ×(-3)

-2看作向西运动2米,×(-3)看作向反方向运动3次。

结果:向 运动 米

(-2) ×(-3)=

(2)学生归纳法则

①符号:在上述4个式子中,我们只看符号,有什么规律?

(+)×(+)=( ) 同号得

(-)×(+)=( ) 异号得

(+)×(-)=( ) 异号得

(-)×(-)=( ) 同号得

②积的绝对值等于 。

③任何数与零相乘,积仍为 。

(3)师生共同用文字叙述有理数乘法法则。

3、 运用法则计算,巩固法则。

(1)教师按课本P75 例1板书,要求学生述说每一步理由。

(2)引导学生观察、分析例子中两因数的关系,得出两个有理数互为倒数,它们的积为 。

(3)学生做练习,教师评析。

(4)教师引导学生做例题,让学生说出每步法则,使之进一步熟悉法则,同时让学生总结出多因数相乘的符号法则。