首页 > 教学教案 > 高中教案 > 高二教案 > 高二数学教案范本【优秀4篇】正文

《高二数学教案范本【优秀4篇】》

时间:

在教学工作者开展教学活动前,需要进行教案编写工作,编写教案有利于老师们准确把握教材的重点与难点,进而选择恰当的教学方法。以下是人见人爱的小编分享的高二数学教案范本【优秀4篇】,希望能够帮助到大家。

高二数学教案 篇1

一、课前预习目标

理解并掌握双曲线的几何性质,并能从双曲线的标准方程出发,推导出这些性质,并能具体估计双曲线的形状特征。

二、预习内容

1、双曲线的几何性质及初步运用。

类比椭圆的几何性质。

2。双曲线的渐近线方程的导出和论证。

观察以原点为中心,2a、2b长为邻边的矩形的两条对角线,再论证这两条对角线即为双曲线的渐近线。

三、提出疑惑

同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中

课内探究

1、椭圆与双曲线的几何性质异同点分析

2、描述双曲线的渐进线的作用及特征

3、描述双曲线的离心率的作用及特征

4、例、练习尝试训练:

例1。求双曲线9y2—16x2=144的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程。

解:

解:

5、双曲线的第二定义

1)。定义(由学生归纳给出)

2)。说明

(七)小结(由学生课后完成)

将双曲线的几何性质按两种标准方程形式列表小结。

作业:

1。已知双曲线方程如下,求它们的两个焦点、离心率e和渐近线方程。

(1)16x2—9y2=144;

(2)16x2—9y2=—144。

2。求双曲线的标准方程:

(1)实轴的长是10,虚轴长是8,焦点在x轴上;

(2)焦距是10,虚轴长是8,焦点在y轴上;

曲线的方程。

点到两准线及右焦点的距离。

高二数学教案 篇2

一、课前准备:

【自主梳理】

1、对数:

(1) 一般地,如果 ,那么实数 叫做________________,记为________,其中 叫做对数的_______, 叫做________.

(2)以10为底的对数记为________,以 为底的对数记为_______.

(3) , 。

2、对数的运算性质:

(1)如果 ,那么 ,

(2)对数的换底公式: 。

3、对数函数:

一般地,我们把函数____________叫做对数函数,其中 是自变量,函数的定义域是______.

4、对数函数的图像与性质:

a1 0

图象性

质 定义域:___________

值域:_____________

过点(1,0),即当x=1时,y=0

x(0,1)时_________

x(1,+)时________ x(0,1)时_________

x(1,+)时________

在___________上是增函数 在__________上是减函数

【自我检测】

1、 的定义域为_________.

2、化简: 。

3、不等式 的解集为________________.

4、利用对数的换底公式计算: 。

5、函数 的奇偶性是____________.

6、对于任意的 ,若函数 ,则 与 的大小关系是___________________________.

二、课堂活动:

【例1】填空题:

(1) 。

(2)比较 与 的大小为___________.

(3)如果函数 ,那么 的最大值是_____________.

(4)函数 的奇偶性是___________.

【例2】求函数 的定义域和值域。

【例3】已知函数 满足 。

(1)求 的解析式;

(2)判断 的奇偶性;

(3)解不等式 。

课堂小结

三、课后作业

1、 。略

2、函数 的定义域为_______________.

3、函数 的值域是_____________.

4、若 ,则 的取值范围是_____________.

5、设 则 的大小关系是_____________.

6、设函数 ,若 ,则 的取值范围为_________________.

7、当 时,不等式 恒成立,则 的取值范围为______________.

8、函数 在区间 上的值域为 ,则 的最小值为____________.

9、已知 。

(1)求 的定义域;

(2)判断 的奇偶性并予以证明;

(3)求使 的 的取值范围。

10、对于函数 ,回答下列问题:

(1)若 的定义域为 ,求实数 的取值范围;

(2)若 的值域为 ,求实数 的取值范围;

(3)若函数 在 内有意义,求实数 的取值范围。

四、纠错分析

错题卡 题 号 错 题 原 因 分 析

高二数学教案:对数与对数函数

一、课前准备:

【自主梳理】

1、对数

(1)以 为底的 的对数, ,底数,真数。

(2) , 。

(3)0,1.

2、对数的运算性质

(1) , , 。

(2) 。

3、对数函数

, 。

4、对数函数的图像与性质

a1 0

图象性质 定义域:(0,+)

值域:R

过点(1,0),即当x=1时,y=0

x(0,1)时y0

x(1,+)时y0 x(0,1)时y0

x(1,+)时y0

在(0,+)上是增函数 在(0,+)上是减函数

【自我检测】

1、 2. 3.

4、 5.奇函数 6. 。

二、课堂活动:

【例1】填空题:

(1)3.

(2) 。

(3)0.

(4)奇函数。

【例2】解:由 得 。所以函数 的定义域是(0,1)。

因为 ,所以,当 时, ,函数 的值域为 ;当 时, ,函数 的值域为 。

【例3】解:(1) ,所以 。

(2)定义域(-3,3)关于原点对称,所以

,所以 为奇函数。

(3) ,所以当 时, 解得

当 时, 解得 。

高二数学优秀教案 篇3

【教材分析】

1、知识内容与结构分析

集合论是现代数学的一个重要的基础。在高中数学中,集合的初步知识与其他内容有着密切的联系,是学习、掌握和使用数学语言的基础,集合论以及它所反映的数学思想在越来越广泛的领域中得到应用。课本从学生熟悉的集合(自然数集合、有理数的集合等)出发,结合实例给出了元素、集合的含义,学生通过对具体实例的抽象、概括发展了逻辑思维能力。

2、知识学习意义分析

通过自主探究的学习过程,了解集合的含义,体会元素与集合的“属于”关系,能选择合适的语言描述不同的具体问题,感受集合语言的意义和作用。

3、教学建议与学法指导

由于本节新概念、新符号较多,虽然内容较为浅显,但不应讲得过快,应在讲解概念的同时,让学生多阅读课本,互相交流,在此基础上理解概念并熟悉新符号的使用。通过问题探究、自主探索、合作交流、自我总结等形式,调动学生的积极性。

【学情分析】

在初中,学生学习过一些点的集合或轨迹,如:平面内到一个定点的距离等于定长的点的集合(圆);到一条线段的两个端点的距离相等的点的集合(线段的垂直平分线)。这对学生学习本节课的知识有一定的帮助,只不过现在我们要把这个“集合”推广,它不仅仅是点的集合或图形的集合,而是“指定的某些对象的全体”。集合语言是现代数学的基本语言,使用这种语言,不仅有助于简洁、准确地表达数学内容,还可以用来刻画和解决生活中的许多问题。学习集合,可以发展同学们用数学语言进行交流的能力。

【教学目标】

1、知识与技能

(1)学生通过自主学习,初步理解集合的概念,理解元素与集合间的关系,了解集合元素的确定性、互异性,无序性,知道常用数集及其记法;

(2)掌握集合的常用表示法——列举法和描述法。

2、过程与方法

通过实例了解集合的含义,体会元素与集合的“属于”关系,能选择合适的语言(如自然语言、图形语言、集合语言)描述不同的具体问题,提高语言转换和抽象概括能力,树立用集合语言表示数学内容的意识。

3、情态与价值

在掌握基本概念的基础上,能够解决相关问题,获得数学学习的成就感,提高学生分析问题和解决问题的能力,培养学生的应用意识。

【重点难点】

1、教学重点:集合的基本概念与表示方法。

2、教学难点:选择合适的方法正确表示集合。

【教学思路】

通过实例以及学生熟悉的数集,引入集合的概念,进而给出集合的表示方法,学生通过自我体会、自主学习、自我总结达到掌握本节课内容的目的。教学过程按照“提出问题——学生讨论——归纳总结——获得新知——自我检测”环节安排。

【教学过程】

课前准备:

提前留给学生预习方案:a.预习初中数学中有关集合的章节;b.预习本节内容,试着找出与以往的联系;c.搜集生活中的集合的使用实例。

导入新课:同学们,我们今天要学习的是集合的知识,在小学和初中,我们已经接触过了一些集合,例如,自然数的集合,有理数的集合,不等式x-7<3的解得集合,到一个顶点的距离等于定长的点的集合(即圆),等等。现在呢,我要说的是:我们大家通过对初中知识的预习和对本节课的预习我相信你们能够很大一部分已经掌握了本节知识的主要问题,对不对?(同学们会高兴地说:对!)

下面我们分三个小组,做个游戏,好不好?我们互相竞赛答题,互相评论优点与不足,好不好?(同学们在被调动起情绪的时候应该说:好!)

教与学的过程:

预设问题设计意图师生活动教师活动

一组二组三组活动同学们,通过看课本2页的(1)至(8)个例子,同学们有什么启发吗?提出一个模糊一点的问题,留给三组学生更宽的思考空间。启发思考,激发兴趣。教师点拨,及时纠正偏差的回答方向。(理想答案:我们学过很多集合的知识了。我们会举出一些集合的例子。)

学生三个组分组轮流回答。你能说出他们有什么共同的特征吗?为集合的定义及含义的给出作出铺垫,并培养学生的总结概括能力。引导学生共同得出正确的结论。最后给出准确的定义:我们把研究的对象称为元素(element);把一些元素组成的总体叫做集合(set)(简称集)。学生讨论,分组轮流回答。你们能说出元素与集合是什么关系吗?怎么表示呀?用什么额符号表示啊?通过学生自己总结,对元素与集合的关系记忆更深刻。教师指导学生得出准确答案。(理想答案:集合是整体,元素是个体,集合有元素组成。集合用大写字母表示,例如A;元素用小写字母表示,例如a.如果a是集合A的元素,就说a属于A集合A,记做a∈A,如果a不是集合A中的元素,就说a不属于集合A,记做A)学生讨论,分组轮流回答。

可以互相挑出对方回答问题的错误来比赛。我们描述集合常用哪些方法呢?怎么表示?引导学生认识集合的两种常见表示方法。教师引导指正。(理想答案:列举法:把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法。描述法:用集合所含元素的共同特征表示集合的方法称为描述法。具体方法是:在花括号内线写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。同学们上黑板边回答边演练。谁能试着说说集合中的元素有什么特点啊?拓展知识,让学生对元素的特征有极爱哦理性的认识,并开发其探究思维。教师点拨。(理想答案:元素一旦给出是确定的,确定性,没有相同的,互异性,是没有顺序的,无序性。

即(1)确定性:对于任意一个元素,要么它属于某个指定集合,要么它不属于该集合,二者必居其一。

(2)互异性:同一个集合中的元素是互不相同的。

(3)无序性:任意改变集合中元素的排列次序,它们仍然表示同一个集合。)学生探究讨论,回答。什么叫两个集合相等呢?深刻理解集合。教师给出答案。(如果构成两个集合的元素是一样的,我们称这两个集合是相等的。)学生探讨回答。

高二数学公开课优秀教案 篇4

教学目标

1、掌握平面向量的数量积及其几何意义;

2、掌握平面向量数量积的重要性质及运算律;

3、了解用平面向量的数量积可以处理有关长度、角度和垂直的问题;

4、掌握向量垂直的条件。

教学重难点

教学重点:平面向量的数量积定义

教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用

教学工具

投影仪

教学过程

复习引入:

向量共线定理向量与非零向量共线的充要条件是:有且只有一个非零实数λ,使=λ

课堂小结

(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?

(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

(3)你在这节课中的表现怎样?你的体会是什么?

课后作业

P107习题2.4A组2、7题

课后小结

(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?

(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

(3)你在这节课中的表现怎样?你的体会是什么?