首页 > 教学教案 > 高中教案 > 人教高中必修5数学教学教案正文

《人教高中必修5数学教学教案》

时间:

作为一位兢兢业业的人民教师,总不可避免地需要编写教案,教案是教材及大纲与课堂教学的纽带和桥梁。怎样写教案才更能起到其作用呢?

高中数学必修5教案 1

教学准备

教学目标

解三角形及应用举例

教学重难点

解三角形及应用举例

教学过程

一、基础知识精讲

掌握三角形有关的定理

利用正弦定理,可以解决以下两类问题:

(1)已知两角和任一边,求其他两边和一角;

(2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);

利用余弦定理,可以解决以下两类问题:

(1)已知三边,求三角;

(2)已知两边和它们的夹角,求第三边和其他两角。

掌握正弦定理、余弦定理及其变形形式,利用三角公式解一些有关三角形中的三角函数问题。

二、问题讨论

思维点拨:已知两边和其中一边的对角解三角形问题,用正弦定理解,但需注意解的情况的讨论。

思维点拨:三角形中的三角变换,应灵活运用正、余弦定理。在求值时,要利用三角函数的有关性质。

例6:在某海滨城市附近海面有一台风,据检测,当前台风中心位于城市O(如图)的东偏南方向

300 km的海面P处,并以20 km / h的速度向西偏北的

方向移动,台风侵袭的范围为圆形区域,当前半径为60 km ,并以10 km / h的速度不断增加,问几小时后该城市开始受到

台风的。侵袭。

一、小结:

1、利用正弦定理,可以解决以下两类问题:

(1)已知两角和任一边,求其他两边和一角;

(2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);

2、利用余弦定理,可以解决以下两类问题:

(1) 已知三边,求三角;

(2)已知两边和它们的夹角,求第三边和其他两角。

3、边角互化是解三角形问题常用的手段。

三、作业:P80

闯关训练