《高中数学教案10篇》
作为一位不辞辛劳的人民教师,通常会被要求编写教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。那么教案应该怎么写才合适呢?下面是小编辛苦为大家带来的高中数学教案10篇,如果能帮助到您,小编的一切努力都是值得的。
内容导航
高中数学教案 篇1高中数学教学设计 篇2高中数学基本不等式教案设计 篇3高中数学教学设计 篇4高中数学教案 篇5高中数学教学计划 篇6高中数学教案 篇7高中数学教学设计 篇8高中数学教学设计 篇9高中数学教案 篇10高中数学教案 篇1
教学目标:
1、了解反函数的概念,弄清原函数与反函数的定义域和值域的关系。
2、会求一些简单函数的反函数。
3、在尝试、探索求反函数的过程中,深化对概念的认识,总结出求反函数的一般步骤,加深对函数与方程、数形结合以及由特殊到一般等数学思想方法的认识。
4、进一步完善学生思维的深刻性,培养学生的逆向思维能力,用辩证的观点分析问题,培养抽象、概括的能力。
教学重点:
求反函数的方法。
教学难点:
反函数的概念。
教学过程:
教学活动
设计意图一、创设情境,引入新课
1、复习提问
①函数的概念
②y=f(x)中各变量的意义
2、同学们在物理课学过匀速直线运动的位移和时间的函数关系,即S=vt和t=(其中速度v是常量),在S=vt 中位移S是时间t的函数;在t=中,时间t是位移S的函数。在这种情况下,我们说t=是函数S=vt的反函数。什么是反函数,如何求反函数,就是本节课学习的内容。
3、板书课题
由实际问题引入新课,激发了学生学习兴趣,展示了教学目标。这样既可以拨去"反函数"这一概念的神秘面纱,也可使学生知道学习这一概念的必要性。
二、实例分析,组织探究
1、问题组一:
(用投影给出函数与;与()的图象)
(1)这两组函数的图像有什么关系?这两组函数有什么关系?(生答:与的图像关于直线y=x对称;与()的图象也关于直线y=x对称。是求一个数立方的运算,而是求一个数立方根的运算,它们互为逆运算。同样,与()也互为逆运算。)
(2)由,已知y能否求x?
(3)是否是一个函数?它与有何关系?
(4)与有何联系?
2、问题组二:
(1)函数y=2x 1(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?
(2)函数(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?
(3)函数 ()的定义域与函数()的值域有什么关系?
3、渗透反函数的概念。
(教师点明这样的函数即互为反函数,然后师生共同探究其特点)
从学生熟知的函数出发,抽象出反函数的概念,符合学生的认知特点,有利于培养学生抽象、概括的能力。
通过这两组问题,为反函数概念的引出做了铺垫,利用旧知,引出新识,在"最近发展区"设计问题,使学生对反函数有一个直观的粗略印象,为进一步抽象反函数的概念奠定基础。
三、师生互动,归纳定义
1、(根据上述实例,教师与学生共同归纳出反函数的定义)
函数y=f(x)(x∈A) 中,设它的值域为 C。我们根据这个函数中x,y的关系,用 y 把 x 表示出来,得到 x = j (y) 。如果对于y在C中的任何一个值,通过x = j (y),x在A中都有的值和它对应,那么, x = j (y)就表示y是自变量,x是自变量 y 的函数。这样的函数 x = j (y)(y ∈C)叫做函数y=f(x)(x∈A)的反函数。记作: 。考虑到"用 x表示自变量, y表示函数"的习惯,将中的x与y对调写成。
2、引导分析:
1)反函数也是函数;
2)对应法则为互逆运算;
3)定义中的"如果"意味着对于一个任意的函数y=f(x)来说不一定有反函数;
4)函数y=f(x)的定义域、值域分别是函数x=f(y)的值域、定义域;
5)函数y=f(x)与x=f(y)互为反函数;
6)要理解好符号f;
7)交换变量x、y的原因。
3、两次转换x、y的对应关系
(原函数中的自变量x与反函数中的函数值y 是等价的,原函数中的函数值y与反函数中的自变量x是等价的)
4、函数与其反函数的关系
函数y=f(x)
函数
定义域
A
C
值 域
C
A
四、应用解题,总结步骤
1、(投影例题)
【例1】求下列函数的反函数
(1)y=3x—1 (2)y=x 1
【例2】求函数的反函数。
(教师板书例题过程后,由学生总结求反函数步骤。)
2、总结求函数反函数的步骤:
1° 由y=f(x)反解出x=f(y)。
2° 把x=f(y)中 x与y互换得。
3° 写出反函数的定义域。
(简记为:反解、互换、写出反函数的定义域)【例3】(1)有没有反函数?
(2)的反函数是________。
(3)(x<0)的反函数是__________。
在上述探究的基础上,揭示反函数的定义,学生有针对性地体会定义的特点,进而对定义有更深刻的认识,与自己的预设产生矛盾冲突,体会反函数。在剖析定义的过程中,让学生体会函数与方程、一般到特殊的数学思想,并对数学的符号语言有更好的把握。
通过动画演示,表格对照,使学生对反函数定义从感性认识上升到理性认识,从而消化理解。
通过对具体例题的讲解分析,在解题的步骤上和方法上为学生起示范作用,并及时归纳总结,培养学生分析、思考的习惯,以及归纳总结的能力。
题目的设计遵循了从了解到理解,从掌握到应用的不同层次要求,由浅入深,循序渐进。并体现了对定义的反思理解。学生思考练习,师生共同分析纠正。
五、巩固强化,评价反馈
1、已知函数 y=f(x)存在反函数,求它的反函数 y =f( x)
(1)y=—2x 3(xR) (2)y=—(xR,且x)
( 3 ) y=(xR,且x)
2、已知函数f(x)=(xR,且x)存在反函数,求f(7)的值。
五、反思小结,再度设疑
本节课主要研究了反函数的定义,以及反函数的求解步骤。互为反函数的两个函数的图象到底有什么特点呢?为什么具有这样的特点呢?我们将在下节研究。
(让学生谈一下本节课的学习体会,教师适时点拨)
进一步强化反函数的概念,并能正确求出反函数。反馈学生对知识的掌握情况,评价学生对学习目标的落实程度。具体实践中可采取同学板演、分组竞赛等多种形式调动学生的积极性。"问题是数学的心脏"学生带着问题走进课堂又带着新的问题走出课堂。
六、作业
习题24 第1题,第2题
进一步巩固所学的知识。
教学设计说明
"问题是数学的心脏"。一个概念的形成是螺旋式上升的,一般要经过具体到抽象,感性到理性的过程。本节教案通过一个物理学中的具体实例引入反函数,进而又通过若干函数的图象进一步加以诱导剖析,最终形成概念。
反函数的概念是教学中的难点,原因是其本身较为抽象,经过两次代换,又采用了抽象的符号。由于没有一一映射,逆映射等概念的支撑,使学生难以从本质上去把握反函数的概念。为此,我们大胆地使用教材,把互为反函数的两个函数的图象关系预先揭示,进而探究原因,寻找规律,程序是从问题出发,研究性质,进而得出概念,这正是数学研究的顺序,符合学生认知规律,有助于概念的建立与形成。另外,对概念的剖析以及习题的配备也很精当,通过不同层次的问题,满足学生多层次需要,起到评价反馈的作用。通过对函数与方程的分析,互逆探索,动画演示,表格对照、学生讨论等多种形式的教学环节,充分调动了学生的探求欲,在探究与剖析的过程中,完善学生思维的深刻性,培养学生的逆向思维。使学生自然成为学习的主人。
高中数学教学设计 篇2
教学目标
(1)理解四种命题的概念;
(2)理解四种命题之间的相互关系,能由原命题写出其他三种形式;
(3)理解一个命题的真假与其他三个命题真假间的关系;
(4)初步掌握反证法的概念及反证法证题的基本步骤;
(5)通过对四种命题之间关系的学习,培养学生逻辑推理能力;
(6)通过对四种命题的存在性和相对性的认识,进行辩证唯物主义观点教育;
(7)培养学生用反证法简单推理的技能,从而发展学生的思维能力.
教学重点和难点
重点:四种命题之间的关系;难点:反证法的运用.
教学过程设计
第一课时:四种命题
一、导入新课
【练习】1.把下列命题改写成“若p则q”的形式:
(l)同位角相等,两直线平行;
(2)正方形的四条边相等.
2.什么叫互逆命题?上述命题的逆命题是什么?
将命题写成“若p则q”的形式,关键是找到命题的条件p与q结论.
如果第一个命题的条件是第二个命题的结论,且第一个命题的结论是第二个命题的条件,那么这两个命题叫做互道命题.
上述命题的道命题是“若一个四边形的四条边相等,则它是正方形”和“若两条直线平行,则同位角相等”.
值得指出的是原命题和逆命题是相对的.我们也可以把逆命题当成原命题,去求它的逆命题.
3.原命题真,逆命题一定真吗?
“同位角相等,两直线平行”这个原命题真,逆命题也真.但“正方形的四条边相等”的原命题真,逆命题就不真,所以原命题真,逆命题不一定真.
学生活动:
口答:
(1)若同位角相等,则两直线平行;
(2)若一个四边形是正方形,则它的四条边相等.
设计意图:
通过复习旧知识,打下学习否命题、逆否命题的基础.
二、新课
【设问】命题“同位角相等,两条直线平行”除了能构成它的逆命题外,是否还可以构成其它形式的命题?
【讲述】可以将原命题的条件和结论分别否定,构成“同位角不相等,则两直线不平行”,这个命题叫原命题的否命题.
【提问】你能由原命题“正方形的四条边相等”构成它的否命题吗?
学生活动:
口答:若一个四边形不是正方形,则它的四条边不相等.
教师活动:
【讲述】一个命题的条件和结论分别是另一个命题的条件的否定和结论的否定,这样的两个命题叫做互否命题.把其中一个命题叫做原命题,另一个命题叫做原命题的否命题.
若用p和q分别表示原命题的条件和结论,用┐p和┐q分别表示p和q的否定.
【板书】原命题:若p则q;
否命题:若┐p则q┐.
【提问】原命题真,否命题一定真吗?举例说明?
学生活动:
讲论后回答:
原命题“同位角相等,两直线平行”真,它的否命题“同位角不相等,两直线不平行”不真.
原命题“正方形的四条边相等”真,它的否命题“若一个四边形不是正方形,则它的四条边不相等”不真.
由此可以得原命题真,它的否命题不一定真.
设计意图:
通过设问和讨论,让学生在自己举例中研究如何由原命题构成否命题及判断它们的真假,调动学生学习的积极性.
教师活动:
【提问】命题“同位角相等,两条直线平行”除了能构成它的逆命题和否命题外,还可以不可以构成别的命题?
学生活动:
讨论后回答
【总结】可以将这个命题的条件和结论互换后再分别将新的条件和结论分别否定构成命题“两条直线不平行,则同位角不相等”,这个命题叫原命题的逆否命题.
教师活动:
【提问】原命题“正方形的四条边相等”的逆否命题是什么?
学生活动:
口答:若一个四边形的四条边不相等,则不是正方形.
教师活动:
【讲述】一个命题的条件和结论分别是另一个命题的结论的否定和条件的否定,这样的两个命题叫做互为逆否命题.把其中一个命题叫做原命题,另一个命题就叫做原命题的逆否命题.
原命题是“若p则q”,则逆否命题为“若┐q则┐p.
【提问】“两条直线不平行,则同位角不相等”是否真?“若一个四边形的四条边不相等,则不是正方形”是否真?若原命题真,逆否命题是否也真?
学生活动:
讨论后回答
这两个逆否命题都真.
原命题真,逆否命题也真.
教师活动:
【提问】原命题的真假与其他三种命题的真
假有什么关系?举例加以说明?
【总结】1.原命题为真,它的逆命题不一定为真.
2.原命题为真,它的否命题不一定为真.
3.原命题为真,它的逆否命题一定为真.
设计意图:
通过设问和讨论,让学生在自己举例中研究如何由原命题构成逆否命题及判断它们的真假,调动学生学的积极性.
教师活动:
三、课堂练习
1.若原命题是“若p则q”,其它三种命题的形式怎样表示?请写在方框内?
学生活动:笔答
教师活动:
2.根据上图所给出的箭头,写出箭头两头命题之间的关系?举例加以说明?
学生活动:讨论后回答
设计意图:
通过学生自己填图,使学生掌握四种命题的形式和它们之间的关系.
教师活动:
高中数学基本不等式教案设计 篇3
一、教材分析
1、本节教材的地位和作用
“基本不等式” 是必修5的重点内容,在课本封面上就体现出来了(展示课本和参考书封面)。它是在学完“不等式的性质”、“不等式的解法”及“线性规划”的基础上对不等式的进一步研究。在不等式的证明和求最值过程中有着广泛的应用。求最值又是高考的热点。同时本节知识又渗透了数形结合、化归等重要数学思想,有利于培养学生良好的思维品质。
2、 教学目标
(1)知识目标:探索基本不等式的证明过程;会用基本不等式解决最值问题。
(2)能力目标:培养学生观察、试验、归纳、判断、猜想等思维能力。?
(3)情感目标:培养学生严谨求实的科学态度,体会数与形的和谐统一,领略数学的应用价值,激发学生的学习兴趣和勇于探索的精神。
3、教学重点、难点
根据课程标准制定如下的教学重点、难点
重点: 应用数形结合的思想理解不等式,并从不同角度探索基本不等式。
难点:基本不等式的内涵及几何意义的挖掘,用基本不等式求最值。
二、教法说明
本节课借助几何画板,使用多媒体辅助进行直观演示。采用启发式教学法创设问题情景,激发学生开始尝试活动。运用生活中的实际例子,让学生享受解决实际问题的乐趣。 课堂上主要采取对比分析;让学生边议、边评;组织学生学、思、练。通过师生和谐对话,使情感共鸣,让学生的潜能、创造性最大限度发挥,使认知效益最大。让学生爱学、乐学、会学、学会。
三、学法指导
为更好的贯彻课改精神,合理的对学生进行素质教育,在教学中,始终以学生主体,教师为主导。因此我在教学中让学生从不同角度去观察、分析,指导学生解决问题,感受知识的形成过程,培养学生数形结合的意识和能力,让学生学会学习。
四、教学设计
◆运用2002年国际数学家大会会标引入
◆运用分析法证明基本不等式
◆不等式的几何解释
◆基本不等式的应用
1、运用2002年国际数学家大会会标引入
如图,这是在北京召开的第24届国际数学家大会会标。会标根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。(展示风车)
正方形ABCD中,AE⊥BE,BF⊥CF,CG⊥DG,DH⊥AH,设AE=a,BE=b,则正方形的面积为S=__,Rt△ABE,Rt△BCF,Rt△CDG,Rt△ADH是全等三角形,它们的面积之和是S’=_
从图形中易得,s≥s’,即
问题1:它们有相等的情况吗?何时相等?
问题2:当 a,b为任意实数时,上式还成立吗?(学生积极思考,通过几何画板帮助学生理解)
一般地,对于任意实数a、b,我们有
当且仅当(重点强调)a=b时,等号成立(合情推理)
问题3:你能给出它的证明吗?(让学生独立证明)
设计意图
(1)运用2002年国际数学家大会会标引入,能让学生进一步体会中国数学的历史悠久,感受数学与生活的联系。
(2)运用此图标能较容易的观察出面积之间的关系,引入基本不等式很直观。
(3)三个思考题为学生创造情景,逐层深入,强化理解。
2、运用分析法证明基本不等式
如果 a>0,b>0 ,
用 和 分别代替a,b。可以得到
也可写成
(强调基本不等式成立的前提条件“正”)(演绎推理)
问题4:你能用不等式的性质直接推导吗?
要证 = 1 GB3 ①
只要证 = 2 GB3 ②
要证② ,只要证 = 3 GB3 ③
要证 = 3 GB3 ③ ,只要证 = 4 GB3 ④
显然, ④是成立的。当且仅当a=b时, 不等式中的等号成立。
(强调基本不等式取等的条件“等”)
设计意图
(1)证明过程课本上是以填空形式出现的,学生能够独立完成,这也能进一步培养学生的自学能力,符合课改精神;
(2)证明过程印证了不等式的正确性,并能加深学生对基本不等式的理解;
(3)此种证明方法是“分析法”,在选修教材的《推理与证明》一章中会重点讲解,此处有必要让学生初步了解。
3、不等式的几何解释
如图,AB是圆的直径,C是AB上任一点,AC=a,CB=b,过点C作垂直于AB的弦DE,连AD,BD,则CD= ,半径为
问题5: 你能用这个图得出基本不等式的几何解释吗? (学生积极思考,通过几何画板帮助学生理解)
设计意图
几何直观能启迪思路,帮助理解,因此,借助几何直观学习和理解数学,是数学学习中的重要方面。只有做到了直观上的理解,才是真正的理解。
4、基本不等式的应用
例1.证明
(学生自己证明)
设计意图
(1)这道例题很简单,多数学生都会仿照课本上的分析思路重新证明,能够练习“分析法”证明不等式的过程;
(2)学生能够加深对基本不等式的理解,a和b不仅仅是一个字母,而是一个符号,它们可以是a、b,也可以是x、y,也可以是一个多项式;
(3)此例不是课本例题,比课本例题简单,这样,循序渐进, 有利于学生理解不等式的内涵。
例2:(1)把36写成两个正数的积,当两个正数取什么值时,它们的和最小?
(2)把18写成两个正数的和,当两个正数取什么值时,它们的积最大?
(让学生分组合作、探究完成)
高中数学教学设计 篇4
一、概述
教材内容:等比数列的概念和通项公式的推导及简单应用 教材难点:灵活应用等比数列及通项公式解决一般问题 教材重点:等比数列的概念和通项公式
二、教学目标分析
1、 知识目标
1)
2) 掌握等比数列的定义 理解等比数列的通项公式及其推导
2.能力目标
1)学会通过实例归纳概念
2)通过学习等比数列的通项公式及其推导学会归纳假设
3)提高数学建模的能力
3、情感目标:
1)充分感受数列是反映现实生活的模型
2)体会数学是来源于现实生活并应用于现实生活
3)数学是丰富多彩的而不是枯燥无味的
三、教学对象及学习需要分析
1、 教学对象分析:
1)高中生已经有一定的学习能力,对各方面的知识有一定的基础,理解能力较强。并掌握了函数及个别特殊函数的性质及图像,如指数函数。之前也刚学习了等差数列,在学习这一章节时可联系以前所学的进行引导教学。
2)对归纳假设较弱,应加强这方面教学
2、学习需要分析:
四。 教学策略选择与设计
1、课前复习
1)复习等差数列的概念及通向公式
2)复习指数函数及其图像和性质
2.情景导入
高中数学教案 篇5
教学目标:
1、理解并掌握瞬时速度的定义;
2、会运用瞬时速度的定义求物体在某一时刻的瞬时速度和瞬时加速度;
3、理解瞬时速度的实际背景,培养学生解决实际问题的能力。
教学重点:
会运用瞬时速度的定义求物体在某一时刻的瞬时速度和瞬时加速度。
教学难点:
理解瞬时速度和瞬时加速度的定义。
教学过程:
一、问题情境
1、问题情境。
平均速度:物体的运动位移与所用时间的比称为平均速度。
问题一平均速度反映物体在某一段时间段内运动的快慢程度。那么如何刻画物体在某一时刻运动的快慢程度?
问题二跳水运动员从10m高跳台腾空到入水的过程中,不同时刻的速度是不同的。假设t秒后运动员相对于水面的高度为h(t)=-4.9t2+6.5t+10,试确定t=2s时运动员的速度。
2、探究活动:
(1)计算运动员在2s到2.1s(t∈)内的平均速度。
(2)计算运动员在2s到(2+?t)s(t∈)内的平均速度。
(3)如何计算运动员在更短时间内的平均速度。
探究结论:
时间区间
t
平均速度
0.1
-13.59
0.01
-13.149
0.001
-13.1049
0.0001
-13.10049
0.00001
-13.100049
0.000001
-13.1000049
当?t?0时,?-13.1,
该常数可作为运动员在2s时的瞬时速度。
即t=2s时,高度对于时间的瞬时变化率。
二、建构数学
1、平均速度。
设物体作直线运动所经过的路程为,以为起始时刻,物体在?t时间内的平均速度为。
可作为物体在时刻的速度的近似值,?t越小,近似的程度就越好。所以当?t?0时,极限就是物体在时刻的瞬时速度。
三、数学运用
例1物体作自由落体运动,运动方程为,其中位移单位是m,时
间单位是s,,求:
(1)物体在时间区间s上的平均速度;
(2)物体在时间区间上的平均速度;
(3)物体在t=2s时的瞬时速度。
分析
解
(1)将?t=0.1代入上式,得:=2.05g=20.5m/s。
(2)将?t=0.01代入上式,得:=2.005g=20.05m/s。
(3)当?t?0,2+?t?2,从而平均速度的极限为:
例2设一辆轿车在公路上作直线运动,假设时的速度为,
求当时轿车的瞬时加速度。
解
∴当?t无限趋于0时,无限趋于,即=。
练习
课本P12—1,2。
四、回顾小结
问题1本节课你学到了什么?
1理解瞬时速度和瞬时加速度的定义;
2实际应用问题中瞬时速度和瞬时加速度的求解;
问题2解决瞬时速度和瞬时加速度问题需要注意什么?
注意当?t?0时,瞬时速度和瞬时加速度的极限值。
问题3本节课体现了哪些数学思想方法?
2极限的思想方法。
3特殊到一般、从具体到抽象的推理方法。
五、课外作业
高中数学教学计划 篇6
一、高中数学教学计划指导思想
准确把握《教学大纲》和《考试大纲》的各项基本要求,立足于基础知识和基本技能的教学,注重渗透数学思想和方法。针对学生实际,不断研究数学教学,改进教法,指导学法,奠定立足社会所需要的必备的基础知识、基本技能和基本能力,着力于培养学生的创新精神,运用数学的意识和能力,奠定他们终身学习的基矗
二、教学建议
1、深入钻研教材。以教材为核心,深入研究教材中章节知识的内外结构,熟练把握知识的逻辑体系,细致领悟教材改革的精髓,逐步明确教材对教学形式、内容和教学目标的影响。
2、准确把握新大纲。新大纲修改了部分内容的教学要求层次,准确把握新大纲对知识点的基本要求,防止自觉不自觉地对教材加深加宽。同时,在整体上,要重视数学应用;重视数学思想方法的渗透。如增加阅读材料(开阔学生的视野),以拓宽知识的广度来求得知识的深度。
3、树立以学生为主体的教育观念。学生的发展是课程实施的出发点和归宿,教师必须面向全体学生因材施教,以学生为主体,构建新的认识体系,营造有利于学生学习的氛围。
4、发挥教材的多种教学功能。用好章头图,激发学生的学习兴趣;发挥阅读材料的功能,培养学生用数学的意识;组织好研究性课题的教学,让学生感受社会生活之所需;小结和复习是培养学生自学的好材料。
5、加强课堂教学研究,科学设计教学方法。根据教材的内容和特征,实行启发式和讨论式教学。发扬教学民主,师生双方密切合作,交流互动,让学生感受、理解知识的产生和发展的过程。教研组要根据教材各章节的重难点制定教学专题,每人每学期指定一个专题,安排一至二次教研课。年级备课组每周举行一至二次教研活动,积累教学经验。
6、落实课外活动的内容。组织和加强数学兴趣小组的活动内容,加强对高层次学生的竞赛辅导,培养拔尖人才。
三、教学进度
高中一年级教学进度
上 学 期 学 期
周 次 内 容 周 次 内 容
1-3 集 合 1-3 任意角的三角函数
4-5 简易逻辑 4-6 两角和与差的三角函数
6-8 映射与函数 7-9 三角函数的图象与性质
9-10 指数函数 10 期中考试
11 期中考试 11-13 向量及运算
12-13 对数函数 14-16 解斜三角形
高中数学教案 篇7
一、学习者特征分析
本节课内容是面向高二下学期的学生,主要是进行思维的训练。学生在高一的时候已经学过这些数学思维方法,但是对这些知识还没有进行概念化的归纳和专门的训练。学生不知道分析法和综合法的时候还是会用一点,以以往的经验,学生一旦学习概念后,反而觉得难度大,概念混淆,因此,这一教学内容的设计是针对学生的这一情况,设计专题学习网站,通过学生之间经过学习,交流,课后反复思考的,进一步深化概念的过程,培养学生的数学思维能力。
二、教学目标
知识与技能
1. 体会数学思维中的分析法和综合法;
2. 会用分析法和综合法去解决问题。
过程与方法
1. 通过对分析法综合法的学习,培养学生的数学思维能力;
2. 培养学生的数学阅读和理解能力;
3. 培养学生的评价和反思能力。
情感态度与价值观
1. 交流、分享运用数学思维解决问题的喜悦;
2. 提高学生学习数学的兴趣;
3. 增强学习数学的信心。
三、教学内容
本节课是数学思维训练专题课,专门训练学生利用分析法和综合法解题。分析法在数学中特指从结果(结论)出发追溯其产生原因的思维方法,即执果索因法。综合思维方法:综合是以已知性质和分析为基础的,从已知出发逐步推求位未知的思考方法,即执果导因法。这两种数学思维方法是数学思维方法中最基础也是最重要的方法,是学生的思维训练的重要内容。
四、教学策略的设计
1. 情境的设计
情境描述
情境简要描述
呈现方式
趣味问题
从前有个国王在处死那些犯了罪的臣子的时候,总是出一些这样那样的智力题给犯人做,用这种方法给那些更聪明的人一条生路,有一位正直的青年叫亚瑟,不幸得罪了国王,国王判他死罪,他所面临的问题是:“这里有三个盒子,金盒,银盒和铅盒,免死金牌放在其中一个盒子内,每只盒子各写一句话,但其中只有一句是真的,你要是猜中了免死金牌在哪个盒子里,就免你一死罪。”聪明的亚瑟经过推理而获知免死金牌所放的盒子,从而救了自己的命,请问亚瑟是如何推理的?
网页
2. 教学资源的设计
资源类型
资源内容简要描述
资源来源
相关故事
通过有趣的推理故事,如“推理救命的故事”,“宝藏的故事,用于激发学生的学习兴趣。
网上下载
学习网站
专题学习网站,嵌入了经过修改适用于本课的论坛,在线测试等。
自行制作
3. 教学工具:计算机
4. 教学策略:自主探究学习策略,任务驱动策略、反思策略
5. 教学环境:网络教室
高中数学教学设计 篇8
一、目标
1、知识与技能
(1)理解流程图的顺序结构和选择结构。
(2)能用字语言表示算法,并能将算法用顺序结构和选择结构表示简单的流程图
2、过程与方法
学生通过模仿、操作、探索、经历设计流程图表达解决问题的过程,理解流程图的结构。
3情感、态度与价值观
学生通过动手作图,。用自然语言表示算法,用图表示算法。进一步体会算法的基本思想——程序化思想,在归纳概括中培养学生的逻辑思维能力。
二、重点、难点
重点:算法的顺序结构与选择结构。
难点:用含有选择结构的流程图表示算法。
三、学法与教学用具
学法:学生通过动手作图,。用自然语言表示算法,用图表示算法,体会到用流程图表示算法,简洁、清晰、直观、便于检查,经历设计流程图表达解决问题的过程。进而学习顺序结构和选择结构表示简单的流程图。
教学用具:尺规作图工具,多媒体。
四、教学思路
(一)、问题引入 揭示题
例1 尺规作图,确定线段的一个5等分点。
要求:同桌一人作图,一人写算法,并请学生说出答案。
提问:用字语言写出算法有何感受?
引导学生体验到:显得冗长,不方便、不简洁。
教师说明:为了使算法的表述简洁、清晰、直观、便于检查,我们今天学习用一些通用图型符号构成一张图即流程图表示算法。
本节要学习的是顺序结构与选择结构。
右图即是同流程图表示的算法。
(二)、观察类比 理解题
1、 投影介绍流程图的符号、名称及功能说明。
符号 符号名称 功能说明
终端框 算法开始与结束
处理框 算法的各种处理操作
判断框 算法的各种转移
输入输出框 输入输出操作
指向线 指向另一操作
2、讲授顺序结构及选择结构的概念及流程图
(1)顺序结构
依照步骤依次执行的一个算法
流程图:
(2)选择结构
对条进行判断决定后面的步骤的结构
流程图:
3、用自然语言表示算法与用流程图表示算法的比较
(1)半径为r的圆的面积公式 当r=10时写出计算圆的面积的算法,并画出流程图。
解:
算法(自然语言)
①把10赋与r
②用公式 求s
③输出s
流程图
(2) 已知函数 对于每输入一个X值都得到相应的函数值,写出算法并画流程图。
算法:(语言表示)
① 输入X值
②判断X的范围,若 ,用函数Y=x+1求函数值;否则用Y=2-x求函数值
③输出Y的值
流程图
小结:含有数学中需要分类讨论的或与分段函数有关的问题,均要用到选择结构。
学生观察、类比、说出流程图与自然语言对比有何特点?(直观、清楚、便于检查和交流)
(三)模仿操作 经历题
1、用流程图表示确定线段A.B的一个16等分点
2、分析讲解例2;
分析:
思考:有多少个选择结构?相应的流程图应如何表示?
高中数学教学设计 篇9
一、教学内容分析
圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象。恰当地利用定义解题,许多时候能以简驭繁。因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来熟练的解题”。
二、学生学习情况分析
我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力较差,推理能力较弱,使用数学语言的表达能力也略显不足。
三、设计思想
由于这部分知识较为抽象,如果离开感性认识,容易使学生陷入困境,降低学习热情。在教学时,借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教学,在轻松愉快的环境中发现、获取新知,提高教学效率。
四、教学目标
1、深刻理解并熟练掌握圆锥曲线的定义,能灵活应用定义解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。
2、通过对练习,强化对圆锥曲线定义的'理解,提高分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法。
3、借助多媒体辅助教学,激发学习数学的兴趣。
五、教学重点与难点:
教学重点
1、对圆锥曲线定义的理解
2、利用圆锥曲线的定义求“最值”
3、“定义法”求轨迹方程
教学难点:
巧用圆锥曲线定义解题
六、教学过程设计
【设计思路】
(一)开门见山,提出问题
一上课,我就直截了当地给出——
例题1:(1)已知A(—2,0),B(2,0)动点M满足|MA|+|MB|=2,则点M的轨迹是()。
(A)椭圆(B)双曲线(C)线段(D)不存在
(2)已知动点M(x,y)满足(x1)2(y2)2|3x4y|,则点M的轨迹是()。
(A)椭圆(B)双曲线(C)抛物线(D)两条相交直线
【设计意图】
定义是揭示概念内涵的逻辑方法,熟悉不同概念的不同定义方式,是学习和研究数学的一个必备条件,而通过一个阶段的学习之后,学生们对圆锥曲线的定义已有了一定的认识,他们是否能真正掌握它们的本质,是我本节课首先要弄清楚的问题。
为了加深学生对圆锥曲线定义理解,我以圆锥曲线的定义的运用为主线,精心准备了两道练习题。
【学情预设】
估计多数学生能够很快回答出正确答案,但是部分学生对于圆锥曲线的定义可能并未真正理解,因此,在学生们回答后,我将要求学生接着说出:若想答案是其他选项的话,条件要怎么改?这对于已学完圆锥曲线这部分知识的学生来说,并不是什么难事。但问题(2)就可能让学生们费一番周折——如果有学生提出:可以利用变形来解决问题,那么我就可以循着他的思路,先对原等式做变形:(x1)2(y2)25这样,很快就能得出正确结果。如若不然,我将启发他们从等式两端的式子|3x4y|5入手,考虑通过适当的变形,转化为学生们熟知的两个距离公式。
在对学生们的解答做出判断后,我将把问题引申为:该双曲线的中心坐标是,实轴长为,焦距为。以深化对概念的理解。
(二)理解定义、解决问题
例2(1)已知动圆A过定圆B:x2y26x70的圆心,且与定圆C:xy6x910相内切,求△ABC面积的最大值。
(2)在(1)的条件下,给定点P(—2,2),求|PA|
【设计意图】
运用圆锥曲线定义中的数量关系进行转化,使问题化归为几何中求最大(小)值的模式,是解析几何问题中的一种常见题型,也是学生们比较容易混淆的一类问题。例2的设置就是为了方便学生的辨析。
【学情预设】
根据以往的经验,多数学生看上去都能顺利解答本题,但真正能完整解答的可能并不多。事实上,解决本题的关键在于能准确写出点A的轨迹,有了练习题1的铺垫,这个问题对学生们来讲就显得颇为简单,因此面对例2(1),多数学生应该能准确给出解答,但是对于例2(2)这样相对比较陌生的问题,学生就无从下手。我提醒学生把3/5和离心率联系起来,这样就容易和第二定义联系起来,从而找到解决本题的突破口。
(三)自主探究、深化认识
如果时间允许,练习题将为学生们提供一次数学猜想、试验的机会
练习:设点Q是圆C:(x1)2225|AB|的最小值。3y225上动点,点A(1,0)是圆内一点,AQ的垂直平分线与CQ交于点M,求点M的轨迹方程。
引申:若将点A移到圆C外,点M的轨迹会是什么?
【设计意图】练习题设置的目的是为学生课外自主探究学习提供平台,当然,如果课堂上时间允许的话,
可借助“多媒体课件”,引导学生对自己的结论进行验证。
【知识链接】
(一)圆锥曲线的定义
1、圆锥曲线的第一定义
2、圆锥曲线的统一定义
(二)圆锥曲线定义的应用举例
1、双曲线1的两焦点为F1、F2,P为曲线上一点,若P到左焦点F1的距离为12,求P到右准线的距离。
2、|PF1||PF2|2。P为等轴双曲线x2y2a2上一点,F1、F2为两焦点,O为双曲线的中心,求的|PO|取值范围。
3、在抛物线y22px上有一点A(4,m),A点到抛物线的焦点F的距离为5,求抛物线的方程和点A的坐标。
4、(1)已知点F是椭圆1的右焦点,M是这椭圆上的动点,A(2,2)是一个定点,求|MA|+|MF|的最小值。
(2)已知A(,3)为一定点,F为双曲线1的右焦点,M在双曲线右支上移动,当|AM||MF|最小时,求M点的坐标。
(3)已知点P(—2,3)及焦点为F的抛物线y,在抛物线上求一点M,使|PM|+|FM|最小。
5、已知A(4,0),B(2,2)是椭圆1内的点,M是椭圆上的动点,求|MA|+|MB|的最小值与最大值。
七、教学反思
1、本课将借助于,将使全体学生参与活动成为可能,使原来令人难以理解的抽象的数学理论变得形象,生动且通俗易懂,同时,运用“多媒体课件”辅助教学,节省了板演的时间,从而给学生留出更多的时间自悟、自练、自查,充分发挥学生的主体作用,这充分显示出“多媒体课件”与探究合作式教学理念的有机结合的教学优势。
2、利用两个例题及其引申,通过一题多变,层层深入的探索,以及对猜测结果的检测研究,培养学生思维能力,使学生从学会一个问题的求解到掌握一类问题的解决方法。循序渐进的让学生把握这类问题的解法;将学生容易混淆的两类求“最值问题”并为一道题,方便学生进行比较、分析。虽然从表面上看,我这一堂课的教学容量不大,但事实上,学生们的思维运动量并不会小。
总之,如何更好地选择符合学生具体情况,满足教学目标的例题与练习、灵活把握课堂教学节奏仍是我今后工作中的一个重要研究课题。而要能真正进行素质教育,培养学生的创新意识,自己首先必须更新观念——在教学中适度使用多媒体技术,让学生有参与教学实践的机会,能够使学生在学习新知识的同时,激发起求知的欲望,在寻求解决问题的办法的过程中获得自信和成功的体验,于不知不觉中改善了他们的思维品质,提高了数学思维能力。
高中数学教案 篇10
学习目标:
1、了解本章的学习的内容以及学习思想方法
2、能叙述随机变量的定义
3、能说出随机变量与函数的关系,
4、能够把一个随机试验结果用随机变量表示
重点:能够把一个随机试验结果用随机变量表示
难点:随机事件概念的透彻理解及对随机变量引入目的的认识:
环节一:随机变量的定义
1.通过生活中的一些随机现象,能够概括出随机变量的定义
2能叙述随机变量的定义
3能说出随机变量与函数的区别与联系
一、阅读课本33页问题提出和分析理解,回答下列问题?
1、了解一个随机现象的规律具体指的是什么?
2、分析理解中的两个随机现象的随机试验结果有什么不同?建立了什么样的对应关系?
总结:
3、随机变量
(1)定义:
这种对应称为一个随机变量。即随机变量是从随机试验每一个可能的结果所组成的
到的映射。
(2)表示:随机变量常用大写字母。等表示。
(3)随机变量与函数的区别与联系
函数随机变量
自变量
因变量
因变量的范围
相同点都是映射都是映射
环节二随机变量的应用
1、能正确写出随机现象所有可能出现的结果2、能用随机变量的描述随机事件
例1:已知在10件产品中有2件不合格品。现从这10件产品中任取3件,其中含有的次品数为随机变量的学案。这是一个随机现象。(1)写成该随机现象所有可能出现的结果;(2)试用随机变量来描述上述结果。
变式:已知在10件产品中有2件不合格品。从这10件产品中任取3件,这是一个随机现象。若Y表示取出的3件产品中的合格品数,试用随机变量描述上述结果
例2连续投掷一枚均匀的硬币两次,用X表示这两次正面朝上的次数,则X是一个随机变
量,分别说明下列集合所代表的随机事件:
(1){X=0}(2){X=1}
(3){X<2}(4){x>0}
变式:连续投掷一枚均匀的硬币三次,用X表示这三次正面朝上的次数,则X是一个随机变量,X的可能取值是?并说明这些值所表示的随机试验的结果。
练习:写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机变量的结果。
(1)从学校回家要经过5个红绿灯路口,可能遇到红灯的次数;
(2)一个袋中装有5只同样 …大小的球,编号为1,2,3,4,5,现从中随机取出3只球,被取出的球的号码数;
小结(对标)