首页 > 教学教案 > 高中教案 > 高中数学教案【优秀7篇】正文

《高中数学教案【优秀7篇】》

时间:

作为一位不辞辛劳的人民教师,可能需要进行教案编写工作,借助教案可以有效提升自己的教学能力。我们该怎么去写教案呢?的小编精心为您带来了高中数学教案【优秀7篇】,在大家参照的同时,也可以分享一下给您最好的朋友。

高中数学教学设计 篇1

教学目标

1、明确等差数列的定义。

2、掌握等差数列的通项公式,会解决知道中的三个,求另外一个的问题

3、培养学生观察、归纳能力。

教学重点

1、等差数列的概念;

2、等差数列的通项公式

教学难点

等差数列“等差”特点的理解、把握和应用

教具准备

投影片1张

教学过程

(I)复习回顾

师:上两节课我们共同学习了数列的定义及给出数列的两种方法通项公式和递推公式。这两个公式从不同的角度反映数列的特点,下面看一些例子。(放投影片)

(Ⅱ)讲授新课

师:看这些数列有什么共同的特点?

1,2,3,4,5,6;①

10,8,6,4,2,…;②

生:积极思考,找上述数列共同特点。

对于数列①(1≤n≤6);(2≤n≤6)

对于数列②—2n(n≥1)(n≥2)

对于数列③(n≥1)(n≥2)

共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。

师:也就是说,这些数列均具有相邻两项之差“相等”的特点。具有这种特点的数列,我们把它叫做等差数。

一、定义:

等差数列:一般地,如果一个数列从第2项起,每一项与空的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。

如:上述3个数列都是等差数列,它们的公差依次是1,—2……

二、等差数列的通项公式

师:等差数列定义是由一数列相邻两项之间关系而得。若一等差数列的首项是,公差是d,则据其定义可得:

若将这n—1个等式相加,则可得:

即:即:即:……

由此可得:师:看来,若已知一数列为等差数列,则只要知其首项和公差d,便可求得其通项。

如数列①(1≤n≤6)

数列②:(n≥1)

数列③:(n≥1)

由上述关系还可得:即:则:=如:三、例题讲解

例1:(1)求等差数列8,5,2…的第20项

(2)—401是不是等差数列—5,—9,—13…的项?如果是,是第几项?

解:(1)由n=20,得(2)由得数列通项公式为:由题意可知,本题是要回答是否存在正整数n,使得—401=—5—4(n—1)成立解之得n=100,即—401是这个数列的第100项。

(Ⅲ)课堂练习

生:(口答)课本P118练习3

(书面练习)课本P117练习1

师:组织学生自评练习(同桌讨论)

(Ⅳ)课时小结

师:本节主要内容为:①等差数列定义。

即(n≥2)

②等差数列通项公式(n≥1)

推导出公式:(V)课后作业

一、课本P118习题3。21,2

二、1、预习内容:课本P116例2P117例4

2、预习提纲:

①如何应用等差数列的定义及通项公式解决一些相关问题?

②等差数列有哪些性质?

高中数学基本不等式教案设计 篇2

教材分析

本节课是在系统的学习了不等关系和不等式性质,掌握了不等式性质的基础上展开的,作为重要的基本不等式之一,为后续的学习奠定基础。 要进一步了解不等式的性质及运用,研究最值问题,此时基本不等式是必不可缺的。基本不等式在知识体系中起了承上启下的作用,同时在生活及生产实际中有着广泛的应用,因此它也是对学生进行情感价值观教育的好素材,所以基本不等式应重点研究。

教学中注意用新课程理念处理教材,学生的数学学习活动不仅要接受、记忆、模仿和练习,而且要自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程。 通过本节学习体会数学来源于生活,提高学习数学的乐趣。

课程目标分析

依据《新课程标准》对《不等式》学段的目标要求和学生的实际情况,特确定如下目标:

1、知识与能力目标:理解掌握基本不等式,并能运用基本不等式解决一些简单的求最值问题;理解算数平均数与几何平均数的概念,学会构造条件使用基本不等式;培养学生探究能力以及分析问题解决问题的能力。

2、过程与方法目标:按照创设情景,提出问题→ 剖析归纳证明→ 几何解释→ 应用(最值的求法、实际问题的解决)的过程呈现。启动观察、分析、归纳、总结、抽象概括等思维活动,培养学生的思维能力,体会数学概念的学习方法,通过运用多媒体的教学手段,引领学生主动探索基本不等式性质,体会学习数学规律的方法,体验成功的乐趣。

3、情感与态度目标:通过问题情境的设置,使学生认识到数学是从实际中来,培养学生用数学的眼光看世界,通过数学思维认知世界,从而培养学生善于思考、勤于动手的良好品质。

教学重、难点分析

重点:应用数形结合的思想理解基本不等式,并从不同角度探索基本不等式 的证明过程及应用。

难点:1、基本不等式成立时的三个限制条件(简称一正、二定、三相等);

2、利用基本不等式求解实际问题中的最大值和最小值。

教法分析

本节课采用观察——感知——抽象——归纳——探究;启发诱导、讲练结合的教学方法,以学生为主体,以基本不等式为主线,从实际问题出发,放手让学生探究思索。以现代信息技术多媒体课件作为教学辅助手段,加深学生对基本不等式的理解。

教学准备

多媒体课件、板书

教学过程

教学过程设计以问题为中心,以探究解决问题的方法为主线展开。这种安排强调过程,符合学生的认知规律,使数学教学过程成为学生对知识的再创造、再发现的过程,从而培养学生的创新意识。

具体过程安排如下:

创设情景,提出问题;

设计意图:数学教育必须基于学生的“数学现实”,现实情境问题是数学教学的平台,数学教师的任务之一就是帮助学生构造数学现实,并在此基础上发展他们的数学现实。基于此,设置如下情境:

上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客。

[问]你能在这个图中找出一些相等关系或不等关系吗?

本背景意图在于利用图中相关面积间存在的数量关系,抽象出不等式 。在此基础上,引导学生认识基本不等式。

二、抽象归纳:

一般地,对于任意实数a,b,有 ,当且仅当a=b时,等号成立。

[问] 你能给出它的证明吗?

学生在黑板上板书。

特别地,当a>0,b>0时,在不等式 中,以 、 分别代替a、b,得到什么?

设计依据:类比是学习数学的一种重要方法,此环节不仅让学生理解了基本不等式不等式的来源,突破了重点和难点,而且感受了其中的函数思想,为今后学习奠定基础。

答案: 。

【归纳总结】

如果a,b都是正数,那么 ,当且仅当a=b时,等号成立。

我们称此不等式为基本不等式。 其中 称为a,b的算术平均数, 称为a,b的几何平均数。

三、理解升华:

1、文字语言叙述:

两个正数的算术平均数不小于它们的几何平均数。

2、联想数列的知识理解基本不等式

已知a,b是正数,A是a,b的等差中项,G是a,b的正的等比中项,A与G有无确定的大小关系?

两个正数的等差中项不小于它们正的等比中项。

3、符号语言叙述:

若 ,则有 ,当且仅当a=b时, 。

[问] 怎样理解“当且仅当”?(学生小组讨论,交流看法,师生总结)

“当且仅当a=b时,等号成立”的含义是:

高中数学教学设计 篇3

一、教学目标

1、在初中学过原命题、逆命题知识的基础上,初步理解四种命题。

2、给一个比较简单的命题(原命题),可以写出它的逆命题、否命题和逆否命题。

3、通过对四种命题之间关系的学习,培养学生逻辑推理能力

4、初步培养学生反证法的数学思维。

二、教学分析

重点:四种命题;难点:四种命题的关系

1、本小节首先从初中数学的命题知识,给出四种命题的概念,接着,讲述四种命题的关系,最后,在初中的基础上,结合四种命题的知识,进一步讲解反证法。

2、教学时,要注意控制教学要求。本小节的内容,只涉及比较简单的命题,不研究含有逻辑联结词“或”、“且”、“非”的命题的逆命题、否命题和逆否命题,

3、“若p则q”形式的命题,也是一种复合命题,并且,其中的p与q,可以是命题也可以是开语句,例如,命题“若,则x,y全为0”,其中的p与q,就是开语句。对学生,只要求能分清命题“若p则q”中的条件与结论就可以了,不必考虑p与q是命题,还是开语句。

三、教学手段和方法(演示教学法和循序渐进导入法)

1、以故事形式入题

2、多媒体演示

四、教学过程

(一)引入:一个生活中有趣的与命题有关的笑话:某人要请甲乙丙丁吃饭,时间到了,只有甲乙丙三人按时赴约。丁却打电话说“有事不能参加”主人听了随口说了句“该来的没来”甲听了脸色一沉,一声不吭的走了,主人愣了一下又说了一句“哎,不该走的走了”乙听了大怒,拂袖即去。主人这时还没意识到又顺口说了一句:“俺说的又不是你”。这时丙怒火中烧不辞而别。四个客人没来的没来,来的又走了。主人请客不成还得罪了三家。大家肯定都觉得这个人不会说话,但是你想过这里面所蕴涵的数学思想吗?通过这节课的学习我们就能揭开它的庐山真面,学生的兴奋点被紧紧抓住,跃跃欲试!

设计意图:创设情景,激发学生学习兴趣

(二)复习提问:

1.命题“同位角相等,两直线平行”的条件与结论各是什么?

2.把“同位角相等,两直线平行”看作原命题,它的逆命题是什么?

3.原命题真,逆命题一定真吗?

“同位角相等,两直线平行”这个原命题真,逆命题也真.但“正方形的四条边相等”的原命题真,逆命题就不真,所以原命题真,逆命题不一定真.

学生活动:

口答:

(1)若同位角相等,则两直线平行;

(2)若一个四边形是正方形,则它的四条边相等.

设计意图:通过复习旧知识,打下学习否命题、逆否命题的基础.

(三)新课讲解:

1.命题“同位角相等,两直线平行”的条件是“同位角相等”,结论是“两直线平行”;如果把“同位角相等,两直线平行”看作原命题,它的逆命题就是“两直线平行,同位角相等”。也就是说,把原命题的结论作为条件,条件作为结论,得到的命题就叫做原命题的逆命题。

2.把命题“同位角相等,两直线平行”的条件与结论同时否定,就得到新命题“同位角不相等,两直线不平行”,这个新命题就叫做原命题的否命题。

3.把命题“同位角相等,两直线平行”的条件与结论互相交换并同时否定,就得到新命题“两直线不平行,同位角不相等”,这个新命题就叫做原命题的逆否命题。

(四)组织讨论:

让学生归纳什么是否命题,什么是逆否命题。

例1及例2

(五)课堂探究:“两条直线不平行,则同位角不相等”是否真?“若一个四边形的四条边不相等,则不是正方形”是否真?若原命题真,逆否命题是否也真?

学生活动:

讨论后回答

这两个逆否命题都真.

原命题真,逆否命题也真

引导学生讨论原命题的真假与其他三种命题的真

假有什么关系?举例加以说明,同学们踊跃发言。

(六)课堂小结:

1、一般地,用p和q分别表示原命题的条件和结论,用¬p和¬q分别表示p和q否定时,四种命题的形式就是:

原命题若p则q;

逆命题若q则p;(交换原命题的条件和结论)

否命题,若¬p则¬q;(同时否定原命题的条件和结论)

逆否命题若¬q则¬p。(交换原命题的条件和结论,并且同时否定)

2、四种命题的关系

(1).原命题为真,它的逆命题不一定为真.

(2).原命题为真,它的否命题不一定为真.

(3).原命题为真,它的逆否命题一定为真

(七)回扣引入

分析引入中的笑话,先讨论,后总结:现在我们来分析一下主人说的四句话:

第一句:“该来的没来”

其逆否命题是“不该来的来了”,甲认为自己是不该来的,所以甲走了。

第二句:“不该走的走了”,其逆否命题为“该走的没走”,乙认为自己该走,所以乙也走了。

第三句:“俺说的不是你(指乙)”其值为真其非命题:“俺说的是你”为假,则说的是他(指丙)为真。所以,丙认为说的是自己,所以丙也走了。

同学们,生活中处处是数学,期待我们善于发现的眼睛

五、作业

1.设原命题是“若

断它们的真假.,则”,写出它的逆命题、否命题与逆否命题,并分别判

2.设原命题是“当时,若,则”,写出它的逆命题、否定命与逆否命题,并分别判断它们的真假.

高中数学教学设计 篇4

一、目标

1、知识与技能

(1)理解流程图的顺序结构和选择结构。

(2)能用字语言表示算法,并能将算法用顺序结构和选择结构表示简单的流程图

2、过程与方法

学生通过模仿、操作、探索、经历设计流程图表达解决问题的过程,理解流程图的结构。

3情感、态度与价值观

学生通过动手作图,。用自然语言表示算法,用图表示算法。进一步体会算法的基本思想——程序化思想,在归纳概括中培养学生的逻辑思维能力。

二、重点、难点

重点:算法的顺序结构与选择结构。

难点:用含有选择结构的流程图表示算法。

三、学法与教学用具

学法:学生通过动手作图,。用自然语言表示算法,用图表示算法,体会到用流程图表示算法,简洁、清晰、直观、便于检查,经历设计流程图表达解决问题的过程。进而学习顺序结构和选择结构表示简单的流程图。

教学用具:尺规作图工具,多媒体。

四、教学思路

(一)、问题引入 揭示题

例1 尺规作图,确定线段的一个5等分点。

要求:同桌一人作图,一人写算法,并请学生说出答案。

提问:用字语言写出算法有何感受?

引导学生体验到:显得冗长,不方便、不简洁。

教师说明:为了使算法的表述简洁、清晰、直观、便于检查,我们今天学习用一些通用图型符号构成一张图即流程图表示算法。

本节要学习的是顺序结构与选择结构。

右图即是同流程图表示的算法。

(二)、观察类比 理解题

1、 投影介绍流程图的符号、名称及功能说明。

符号 符号名称 功能说明

终端框 算法开始与结束

处理框 算法的各种处理操作

判断框 算法的各种转移

输入输出框 输入输出操作

指向线 指向另一操作

2、讲授顺序结构及选择结构的概念及流程图

(1)顺序结构

依照步骤依次执行的一个算法

流程图:

(2)选择结构

对条进行判断决定后面的步骤的结构

流程图:

3、用自然语言表示算法与用流程图表示算法的比较

(1)半径为r的圆的面积公式 当r=10时写出计算圆的面积的算法,并画出流程图。

解:

算法(自然语言)

①把10赋与r

②用公式 求s

③输出s

流程图

(2) 已知函数 对于每输入一个X值都得到相应的函数值,写出算法并画流程图。

算法:(语言表示)

① 输入X值

②判断X的范围,若 ,用函数Y=x+1求函数值;否则用Y=2-x求函数值

③输出Y的值

流程图

小结:含有数学中需要分类讨论的或与分段函数有关的问题,均要用到选择结构。

学生观察、类比、说出流程图与自然语言对比有何特点?(直观、清楚、便于检查和交流)

(三)模仿操作 经历题

1、用流程图表示确定线段A.B的一个16等分点

2、分析讲解例2;

分析:

思考:有多少个选择结构?相应的流程图应如何表示?

高中数学基本不等式教案设计 篇5

课标要求

知识与技能:学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等;

过程与方法:通过实例探究抽象基本不等式;

情感目标:通过本节的学习,体会数学来源于生活,提高学习数学的兴趣; 识记 理解 应用 综合 知识点一:

基本不等式及其推导

过程 ∨ 知识点二:

基本不等式的应用 ∨ 目标设计 1.通过从不同角度探索不等式 的证明过程,使学生理解基本不等式及其等号成立的条件;

2、掌握基本不等式解决最值问题,并理解运用基本不等式 的三个限制条件(一正二定三相等)在解决最值中的作用。 教学情境一:

如图是在北京召开的第24界国际数学家大会的会标,

会标是根据中国古代数学家赵爽的弦图设计的,

颜色的明暗使它看上去象一个风车,代表中国人民热情好客。

问题1:你能在这个图案中找出一些相等关系或不等关系吗?

分析:将图中的“风车”抽象成如图,在正方形ABCD中有4个全等的直角三角形。设直角三角形的两条直角边长为a,b那么正方形的边长为 。

教师引导学生从面积的关系去找相等关系或不等关系。

我们考虑4个直角三角形的面积的和是 ,正方形的面积为 。

由图可知 ,即 。

当直角三角形变为等腰直角三角形,即a=b时,正方形EFGH缩为一个点,这时有 。

新知:若 ,则

教学情境二:

先将两张正方形纸片沿它们的对角线折成两个等腰直角三角形,

再用这两个三角形拼接构造出一个矩形

(两边分别等于两个直角三角形的直角边,多余部分折叠)。

假设两个正方形的面积分别为 和 ( )

问题2:考察左图中两个直角三角形的面积与矩形的面积,你能发现一个不等式吗?

新知:若 ,则

问题3:你能用代数的方法给出它们的证明吗?

证明:因为 ,即 (当 时取等号)

(在该过程中,可发现 的取值可以是全体实数)

证明:(分析法):由于 ,于是要证明 ,

只要证明 ,

即证 ,即 ,

所以 ,(当 时取等号)

【板书】两个重要不等式

若 ,则 (当且仅当 时,等号成立)

若 ,则 (当且仅当 时,等号成立)

高中数学教学设计 篇6

学习目标

明确排列与组合的联系与区别,能判断一个问题是排列问题还是组合问题;能运用所学的排列组合知识,正确地解决的实际问题。

学习过程

一、学前准备

复习:

1、(课本P28A13)填空:

(1)有三张参观卷,要在5人中确定3人去参观,不同方法的种数是 ;

(2)要从5件不同的礼物中选出3件分送3为同学,不同方法的种数是 ;

(3)5名工人要在3天中各自选择1天休息,不同方法的种数是 ;

(4)集合A有个 元素,集合B有 个元素,从两个集合中各取1个元素,不同方法的种数是 ;

二、新课导学

探究新知(复习教材P14~P25,找出疑惑之处)

问题1:判断下列问题哪个是排列问题,哪个是组合问题:

(1)从4个风景点中选出2个安排游览,有多少种不同的方法?

(2)从4个风景点中选出2个,并确定这2个风景点的游览顺序,有多少种不同的方法?

应用示例

例1.从10个不同的文艺节目中选6个编成一个节目单,如果某女演员的独唱节目一定不能排在第二个节目的位置上,则共有多少种不同的排法?

例2.7位同学站成一排,分别求出符合下列要求的不同排法的种数。

(1) 甲站在中间;

(2)甲、乙必须相邻;

(3)甲在乙的左边(但不一定相邻);

(4)甲、乙必须相邻,且丙不能站在排头和排尾;

(5)甲、乙、丙相邻;

(6)甲、乙不相邻;

(7)甲、乙、丙两两不相邻。

高中数学教学计划 篇7

一、高中数学教学计划指导思想

准确把握《教学大纲》和《www.考试大纲》的各项基本要求,立足于基础知识和基本技能的教学,注重渗透数学思想和方法。针对学生实际,不断研究数学教学,改进教法,指导学法,奠定立足社会所需要的必备的基础知识、基本技能和基本能力,着力于培养学生的创新精神,运用数学的意识和能力,奠定他们终身学习的基矗

二、教学建议

1、深入钻研教材。以教材为核心,深入研究教材中章节知识的内外结构,熟练把握知识的逻辑体系,细致领悟教材改革的精髓,逐步明确教材对教学形式、内容和教学目标的影响。

2、准确把握新大纲。新大纲修改了部分内容的教学要求层次,准确把握新大纲对知识点的基本要求,防止自觉不自觉地对教材加深加宽。同时,在整体上,要重视数学应用;重视数学思想方法的渗透。如增加阅读材料(开阔学生的视野),以拓宽知识的广度来求得知识的深度。

3、树立以学生为主体的教育观念。学生的发展是课程实施的出发点和归宿,教师必须面向全体学生因材施教,以学生为主体,构建新的认识体系,营造有利于学生学习的氛围。

4、发挥教材的多种教学功能。用好章头图,激发学生的学习兴趣;发挥阅读材料的功能,培养学生用数学的意识;组织好研究性课题的教学,让学生感受社会生活之所需;小结和复习是培养学生自学的好材料。

5、加强课堂教学研究,科学设计教学方法。根据教材的内容和特征,实行启发式和讨论式教学。发扬教学民主,师生双方密切合作,交流互动,让学生感受、理解知识的产生和发展的过程。教研组要根据教材各章节的重难点制定教学专题,每人每学期指定一个专题,安排一至二次教研课。年级备课组每周举行一至二次教研活动,积累教学经验。

6、落实课外活动的内容。组织和加强数学兴趣小组的活动内容,加强对高层次学生的竞赛辅导,培养拔尖人才。

三、教学进度

高中一年级教学进度

上 学 期 学 期

周 次 内 容 周 次 内 容

1-3 集 合 1-3 任意角的三角函数

4-5 简易逻辑 4-6 两角和与差的三角函数

6-8 映射与函数 7-9 三角函数的图象与性质

9-10 指数函数 10 期中考试

11 期中考试 11-13 向量及运算

12-13 对数函数 14-16 解斜三角形