《一元二次方程教案【优秀5篇】》
作为一名默默奉献的教育工作者,时常会需要准备好教案,教案是备课向课堂教学转化的关节点。优秀的教案都具备一些什么特点呢?下面是小编辛苦为大家带来的一元二次方程教案【优秀5篇】,在大家参照的同时,也可以分享一下给您最好的朋友。
九年级数学《一元二次方程》教案 篇1
一、教材分析:
1、本章的主要内容:
(1)一元二次方程的有关概念;
(2)一元二次方程的解法,根的判别式及根与系数的关系;
(3)实际问题与一元二次方程。
2、本章知识结构图:
3、教学目标:
(1)以分析实际问题中的等量关系并求解其中的未知数为背景,认识一元二次方程及其有关概念;
(2)根据化归的思想,抓住“降次”这一基本策略,掌握配方法、直接开平法、公式法和因式分解法等一元二次方程的基本解法;
(3)经历分析和解决实际问题的过程,体会一元二次方程的数学模型作用,进一步提高在实际问题中运用方程这种重要数学工具的基本能力。
4、本章的重点与难点
本章学习的重点:一元二次方程的解法及应用一元二次方程解决实际问题。
难点:
(1)分析方程的特点并根据方程的特点选择合适的解法;
(2)实际背景问题的等量分析,设元列一元二次方程解应用题。即建立一元二次方程模型解决实际问题,尽管已经有了运用一次方程(组)解应用问题的经验,但由于实际问题涉及的内容广泛,有的背景学生不熟悉,有的问题数量关系复杂,不易找出等量关系。同时,还要根据实际问题的意义检验求得的结果是否合理。
二、教学中应注意的问题:
1、重视一元二次方程与实际的联系,再次体现数学建模思想。
方程是刻画现实世界的有效数学模型,因而方程教学关注方程的建模过程。教科书的第1节就是想通过多种实际问题的分析,经历模型化的过程,并在此基础上抽象出数学概念。当然,在教学中除教科书第1节、第5节提供了大量的实际问题外,教师还应根据学生生活实际和认知水平,创设更为丰富、贴近学生的现实情景,并引导学生分析其中的数量关系,建立方程模型。在经历多次这样的数学活动,使学生感受到方程与实际问题的联系,领会数学建模思想,增强学生学习数学的兴趣和应用意识,培养学生分析问题、解决问题的能力。
2、本章为学生提供了许多活动,教学中应让学生进行充分的探索和交流。
如在一元二次方程解法的教学中,教师不要采用先示范,然后让学生模仿的方法,而应通过恰当的引导,鼓励学生先独立探索解法,并相互交流。在一元二次方程应用的教学中,应鼓励与提倡解决问题策略的多样化,学生的解法只要合理,就给以肯定,不必拘泥于教科书的解法。
3、注重数学思想方法的渗透。
数学是以数量关系和空间形式为主要研究对象的科学,数量关系和空间形式是从现实世界中抽象出来的,这样的抽象是一个逐步深入的过程。方程是含有未知数的等式,它们表达了数量之间的相等关系。正如前面所学习过的其他方程,一元二次方程可以表达许多实际问题中包含的数量相等关系,因而也可以作为分析和解决这些问题的重要数学模型。从反映方程与实际问题的密切联系的角度看,本章与本套教科书前面有关方程的各章是一脉相承的,实际问题情境始终贯穿于本章之中。
这就是所谓的“数学化”过程,其中渗透了符号化和数学建模思想,列方程解决实际问题时,要首先分析题意,找出题中的等量关系。分析过程中,借助示意图或表格常常能使抽象的数量关系具体化、形象化,把数与形结合起来是解决数学问题的一个有效的思想方法。
解一元二次方程的每一种方法都渗透着“转化”思想。开平方法、因式分解法通过“降次”,把一元二次方程转化成两个一元一次方程来解;配方法把方转化成的形式,这是数学形式的转化;而公式法直接利用公式把方程中的“未知”转化为“已知”。这种思想,学生可以运用旧知识来解决新问题,把“不会”变为“会”,它在将来学习二次函数、二次不等式等知识时具有广泛的应用,在教学中,教师应注意引导学生体会这种思想。
4、重视一元二次方程的特殊性,突出解一元二次方程的基本策略以及解法中的关键步骤。
在学习本章之前,学生已经分两次学习过整式方程(一元一次方程、二元一次方程组),并且学习了可以化为一元一次方程的分式方程,他们对于解方程的基本思路(使方程逐步化为的形式)已经比较熟悉,按照这种思路可以继续考虑一元二次方程的解法。
一元二次方程与前面的方程相比,特点在于未知数的次数是2(二次),新的问题是如何将一元二次转化为学过的一元一次方程,这就是“降次”及“转化”的思想。
5、注意把握教学要求。
在一元二次方程解法的教学中,应避免过多地求解没有实际背景的一元二次方程,进行单纯的形式化的重复操练,应注意将知识技能的培养寓于实际应用问题的解决过程中。
关于一元二次方程根的判别式、一元二次方程根与系数的关系,根据《课标》要求,教学中只做适当的补充。
三、教学建议:
22.1一元二次方程:
本节1课时,以实际问题为背景,引出一元二次方程的概念,归纳出一元二次方程的一般形式;给出一元二次方程根的概念,并提出一元二次方程的根是两个;根据方程的根与方程的关系,再次理解代入法。
教学目标:通过实际问题了解一元二次方程的定义及一般形式;会将一个整式方程化为一元二次方程的一般形式,并能指出二次项及二次项系数、一次项及一次项系数和常数项。
教学重点:一元二次方程及有关概念的理解。
教学难点:准确的化为一元二次方程的一般式,将根代入原方程这种数学方法的理解。
教、学法建议:课前让学生完成自学内容。
(1)一元二次方程的定义关键点:整式方程、只含一个未知数、未知项最高次数为2。
(2)对一元二次方程定义的理解时,一定注意“a≠0”这一条件。
(3)用列举法探索一元二次方程的根是对一元二次方程精确求解的一种探索和补充,在教学中让学生独立尝试,强调学生的自主学习,注重合作交流,提高学生观察、分析和创新的能力。
注意点:①当a是负值时,一般转化为正数;
②增加b=0或c=0或b、c同时为0的特例;
③注意联系实际学习,避免就概念理解概念。
22.2降次---解一元二次方程
直接开平方法、配方法、公式法和因式分解法是一元二次方的基本解法,解二次方程的基本策略是降次。首先通过简单的一元二次方程,引导学生认识直接开平方法解方程;然后讨论比较复杂的一元二次方程,通过对比已变为完全平方式的方程,使学生认识配方法的基本原理并掌握其具体方法;以配方法为基础推导一元二次方程的求根公式,于是得到公式法。最后讨论因式分解法。
教学目标:理解和掌握一元二次方程的四种解法:直接开平方法、配方法、公式法、因式分解法。
教学重点:一元二次方程的解法。
教学难点:针对不同方程,选择合适的解法。
教、学法建议:
(1)直接开平方法:初二已学过平方根和算术平方根,学习时注意由浅入深进行。
(2)配方法:配方法在数学中成为一种很重要的数学变形,它隐含了创造条件实现化归的思想,这种思想对培养学生的数学能力影响很大。在教学中,对配方法和划归思想应充分重视,给学生提供充足的时间探索,充分的合作交流时间和空间,引导学生理解这种方法的道理,结合道理去记忆配方的具体步骤。
(3)公式法:根据配方法推导求根公式,以配方法为基础,引导学生自己探索求根公式,不可直接抛出公式让学生模仿着用。强调“当”是根据非负而产生的。教学时总结出公式法解题的一般步骤:化为一般式;指出a、b、c,带符号;写出求根公式;代入求解。在公式法之后进行归纳,总结根的判别式对应的一元二次方程根的三种情况:
①有两个不等的实数根;
②有两个相等的实数根;
①②合称为由实数根,③没有实数根,但不能说没有根。
(4)因式分解法:新课标已把这部分的内容降要求了,所以,不要再提高复杂度,只要求学生能掌握:三类。当然,有余力的可稍作变式。另外,对于二次项系数为1的简单的十字相乘法一点补充。
第一课时,安排可直接提公因式类型
第二课时,安排需要整理后方可因式分解类型,及简单的十字相乘法。
(5)一元二次方程根的判别式:这是中山的补充教学的内容,在教学时主要让学生知道根的判别式的作用及进行简单的应用。
(6)一元二次方程根与系数关系:这是中山的补充教学的内容,在教学时主要让学生知道根的判别式的作用及进行简单的应用。
根据中山中考命题的特点,在进行完根的判别式与根与系数的关系的简单知识的教学之后再上一节习题课,目的是让学生懂得利用知识解决较为综合的问题。
注意点:
①以解决实际问题背景为线索安排解法学习,方法步骤多由学生归纳总结。
②配方法、公式法都应先判断是否为一般形式,小心符号错误或混淆
③因式分解法没注意方程没有写成A·B=0形式,要讲解原理
④形如:,学生会约分,造成丢根。
⑤对一个方程,应先鼓励学生分析方程特点,对解法发表自己的意见,体会数学思想方法的作用,逐步养成主动探究和应用的习惯。
22.3实际问题与一元二次方程
一节安排了四个探究栏目,分别探究传播、成本下降率、面积、匀变速运动等问题,使学生进一步体会方程是刻画现实世界的一个有效的数学模型。
四、课时安排:
本章教学约需14课时,具体分配如下:
§22.1一元二次方程 1课时
§22.2一元二次方程的解法5课时
一元二次方程的根的判别式1课时
一元二次方程的根与系数的关系2课时
§22.3一元二次方程的应用2课时
§小结2课时
单元测验1课时
元二次方程教案 篇2
一、素质教育目标
(一)知识教学点:使学生会用列一元二次方程的方法解决有关增长率问题.
(二)能力训练点:进一步培养学生化实际问题为数学问题的能力和分析问题解决问题的能力,培养学生用数学的意识.
二、教学重点、难点
1.教学重点:学会用列方程的方法解决有关增长率问题.
2.教学难点:有关增长率之间的数量关系.下列词语的异同;增长,增长了,增长到;扩大,扩大到,扩大了.
三、教学步骤
(一)明确目标.
(二)整体感知
(三)重点、难点的学习和目标完成过程
1.复习提问
(1)原产量+增产量=实际产量.
(2)单位时间增产量=原产量×增长率.
(3)实际产量=原产量×(1+增长率).
2.例1 某钢铁厂去年一月份某种钢的产量为5000吨,三月份上升到7200吨,这两个月平均每月增长的百分率是多少?
分析:设平均每月的增长率为x.
则2月份的产量是5000+5000x=5000(1+x)(吨).
3月份的产量是[5000(1+x)+5000(1+x)x]
=5000(1+x)2(吨).
解:设平均每月的增长率为x,据题意得:
5000(1+x)2=7200
(1+x)2=1。44
1+x=±1。2.
x1=0。2,x2=-2。2(不合题意,舍去).
取x=0。2=20%.
教师引导,点拨、板书,学生回答.
注意以下几个问题:
(1)为计算简便、直接求得,可以直接设增长的百分率为x.
(2)认真审题,弄清基数,增长了,增长到等词语的关系.
(3)用直接开平方法做简单,不要将括号打开.
练习1.教材P。42中5.
学生分析题意,板书,笔答,评价.
练习2.若设每年平均增长的百分数为x,分别列出下面几个问题的方程.
(1)某工厂用二年时间把总产值增加到原来的b倍,求每年平均增长的百分率.
(1+x)2=b(把原来的总产值看作是1.)
(2)某工厂用两年时间把总产值由a万元增加到b万元,求每年平均增长的百分数.
(a(1+x)2=b)
(3)某工厂用两年时间把总产值增加了原来的b倍,求每年增长的百分数.
((1+x)2=b+1把原来的总产值看作是1.)
以上学生回答,教师点拨.引导学生总结下面的规律:
设某产量原来的产值是a,平均每次增长的百分率为x,则增长一次后的产值为a(1+x),增长两次后的产值为a(1+x)2 ,…………增长n次后的产值为S=a(1+x)n.
规律的得出,使学生对此类问题能居高临下,同时培养学生的探索精神和创造能力.
例2 某产品原来每件600元,由于连续两次降价,现价为384元,如果两个降价的百分数相同,求每次降价百分之几?
分析:设每次降价为x.
第一次降价后,每件为600-600x=600(1-x)(元).
第二次降价后,每件为600(1-x)-600(1-x)x
=600(1-x)2(元).
解:设每次降价为x,据题意得
600(1-x)2=384.
答:平均每次降价为20%.
教师引导学生分析完毕,学生板书,笔答,评价,对比,总结.
引导学生对比“增长”、“下降”的区别.如果设平均每次增长或下降为x,则产值a经过两次增长或下降到b,可列式为a(1+x)2=b(或a(1-x)2=b).
(四)总结、扩展
1.善于将实际问题转化为数学问题,严格审题,弄清各数据相互关系,正确布列方程.培养学生用数学的意识以及渗透转化和方程的思想方法.
2.在解方程时,注意巧算;注意方程两根的取舍问题.
3.我们只学习一元一次方程,一元二次方程的解法,所以只求到两年的增长率.3年、4年……,n年,应该说按照规律我们可以列出方程,随着知识的增加,我们也将会解这些方程.
四、布置作业
教材P。42中A8
五、板书设计
12。6 一元二次方程应用(三)
1.数量关系:例1……例2……
(1)原产量+增产量=实际产量分析:……分析……
(2)单位时间增产量=原产量×增长率解……解……
(3)实际产量=原产量(1+增长率)
2.最后产值、基数、平均增长率、时间
的基本关系:
M=m(1+x)n n为时间
M为最后产量,m为基数,x为平均增长率
12.6 一元二次方程的应用(三)
一、素质教育目标
(一)知识教学点:使学生会用列一元二次方程的方法解决有关增长率问题.
(二)能力训练点:进一步培养学生化实际问题为数学问题的能力和分析问题解决问题的能力,培养学生用数学的意识.
二、教学重点、难点
1.教学重点:学会用列方程的方法解决有关增长率问题.
2.教学难点:有关增长率之间的数量关系.下列词语的异同;增长,增长了,增长到;扩大,扩大到,扩大了.
三、教学步骤
(一)明确目标.
(二)整体感知
(三)重点、难点的学习和目标完成过程
1.复习提问
(1)原产量+增产量=实际产量.
(2)单位时间增产量=原产量×增长率.
(3)实际产量=原产量×(1+增长率).
2.例1 某钢铁厂去年一月份某种钢的产量为5000吨,三月份上升到7200吨,这两个月平均每月增长的百分率是多少?
分析:设平均每月的增长率为x.
则2月份的产量是5000+5000x=(★)5000(1+x)(吨).
3月份的产量是[5000(1+x)+5000(1+x)x]
=5000(1+x)2(吨).
解:设平均每月的增长率为x,据题意得:
5000(1+x)2=7200
(1+x)2=1。44
1+x=±1。2.
x1=0。2,x2=-2。2(不合题意,舍去).
取x=0。2=20%.
教师引导,点拨、板书,学生回答.
注意以下几个问题:
(1)为计算简便、直接求得,可以直接设增长的百分率为x.
(2)认真审题,弄清基数,增长了,增长到等词语的关系.
(3)用直接开平方法做简单,不要将括号打开.
练习1.教材P。42中5.
学生分析题意,板书,笔答,评价.
练习2.若设每年平均增长的百分数为x,分别列出下面几个问题的方程.
(1)某工厂用二年时间把总产值增加到原来的b倍,求每年平均增长的百分率.
(1+x)2=b(把原来的总产值看作是1.)
(2)某工厂用两年时间把总产值由a万元增加到b万元,求每年平均增长的百分数.
(a(1+x)2=b)
(3)某工厂用两年时间把总产值增加了原来的b倍,求每年增长的百分数.
((1+x)2=b+1把原来的总产值看作是1.)
以上学生回答,教师点拨.引导学生总结下面的规律:
设某产量原来的产值是a,平均每次增长的百分率为x,则增长一次后的产值为a(1+x),增长两次后的产值为a(1+x)2 ,…………增长n次后的产值为S=a(1+x)n.
规律的得出,使学生对此类问题能居高临下,同时培养学生的探索精神和创造能力.
例2 某产品原来每件600元,由于连续两次降价,现价为384元,如果两个降价的百分数相同,求每次降价百分之几?
分析:设每次降价为x.
第一次降价后,每件为600-600x=600(1-x)(元).
第二次降价后,每件为600(1-x)-600(1-x)x
=600(1-x)2(元).
解:设每次降价为x,据题意得
600(1-x)2=384.
答:平均每次降价为20%.
教师引导学生分析完毕,学生板书,笔答,评价,对比,总结.
引导学生对比“增长”、“下降”的区别.如果设平均每次增长或下降为x,则产值a经过两次增长或下降到b,可列式为a(1+x)2=b(或a(1-x)2=b).
(四)总结、扩展
1.善于将实际问题转化为数学问题,严格审题,弄清各数据相互关系,正确布列方程.培养学生用数学的意识以及渗透转化和方程的思想方法.
2.在解方程时,注意巧算;注意方程两根的取舍问题.
3.我们只学习一元一次方程,一元二次方程的解法,所以只求到两年的增长率.3年、4年……,n年,应该说按照规律我们可以列出方程,随着知识的增加,我们也将会解这些方程.
四、布置作业
教材P。42中A8
五、板书设计
12。6 一元二次方程应用(三)
1.数量关系:例1……例2……
(1)原产量+增产量=实际产量分析:……分析……
(2)单位时间增产量=原产量×增长率解……解……
(3)实际产量=原产量(1+增长率)
2.最后产值、基数、平均增长率、时间的基本关系:
M=m(1+x)n n为时间
M为最后产量,m为基数,x为平均增长率
元二次方程教案 篇3
一、素质教育目标
(一)知识教学点:使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题.
(二)能力训练点:通过列方程解应用问题,进一步提高分析问题、解决问题的能力.
二、教学重点、难点
1.教学重点:会用列一元二次方程的方法解有关数与数字之间的关系的应用题.
2.教学难点:根据数与数字关系找等量关系.
三、教学步骤
(一)明确目标
(二)整体感知:
(三)重点、难点的学习和目标完成过程
1.复习提问
(1)列方程解应用问题的步骤?
①审题,②设未知数,③列方程,④解方程,⑤答.
(2)两个连续奇数的表示方法是,2n+1,2n-1;2n-1,2n-3;……(n表示整数).
2.例1 两个连续奇数的积是323,求这两个数.
分析:(1)两个连续奇数中较大的奇数与较小奇数之差为2,(2)设元(几种设法) .设较小的奇数为x,则另一奇数为x+2, 设较小的奇数为x-1,则另一奇数为x+1; 设较小的奇数为2x-1,则另一个奇数2x+1.
以上分析是在教师的引导下,学生回答,有三种设法,就有三种列法,找三位学生使用三种方法,然后进行比较、鉴别,选出最简单解法.
解法(一)
设较小奇数为x,另一个为x+2,
据题意,得x(x+2)=323.
整理后,得x2+2x-323=0.
解这个方程,得x1=17,x2=-19.
由x=17得x+2=19,由x=-19得x+2=-17,
答:这两个奇数是17,19或者-19,-17.
解法(二)
设较小的奇数为x-1,则较大的奇数为x+1.
据题意,得(x-1)(x+1)=323.
整理后,得x2=324.
解这个方程,得x1=18,x2=-18.
当x=18时,18-1=17,18+1=19.
当x=-18时,-18-1=-19,-18+1=-17.
答:两个奇数分别为17,19;或者-19,-17.
解法(三)
设较小的奇数为2x-1,则另一个奇数为2x+1.
据题意,得(2x-1)(2x+1)=323.
整理后,得4x2= 324.
解得,2x=18,或2x=-18.
当2x=18时,2x-1=18-1=17;2x+1=18+1=19.
当2x=-18时,2x-1=-18-1=-19;2x+1=-18+1=-17
答:两个奇数分别为17,19;-19,-17.
引导学生观察、比较、分析解决下面三个问题:
1.三种不同的设元,列出三种不同的方程,得出不同的x值,影响最后的结果吗?
2.解题中的x出现了负值,为什么不舍去?
答:奇数、偶数是在整数范围内讨论,而整数包括正整数、零、负整数.3.选出三种方法中最简单的一种.
练习
1.两个连续整数的积是210,求这两个数.
2.三个连续奇数的和是321,求这三个数.
3.已知两个数的和是12,积为23,求这两个数.
学生板书,练习,回答,评价,深刻体会方程的思想方法.例2 有一个两位数等于其数字之积的3倍,其十位数字比个位数字小2,求这两位数.
分析:数与数字的关系是:
两位数=十位数字×10+个位数字.
三位数=百位数字×100+十位数字×10+个位数字.
解:设个位数字为x,则十位数字为x-2,这个两位数是10(x-2)+x.
据题意,得10(x-2)+x=3x(x-2),
整理,得3x2-17x+20=0,
当x=4时,x-2=2,10(x-2)+x=24.
答:这个两位数是24.
练习1 有一个两位数,它们的十位数字与个位数字之和为8,如果把十位数字与个位数字调换后,所得的两位数乘以原来的两位数就得1855,求原来的两位数.(35,53)
2.一个两位数,其两位数字的差为5,把个位数字与十位数字调换后所得的数与原数之积为976,求这个两位数.
教师引导,启发,学生笔答,板书,评价,体会.
(四)总结,扩展
1奇数的表示方法为 2n+1,2n-1,……(n为整数)偶数的表示方法是2n(n是整数),连续奇数(偶数)中,较大的与较小的差为2,偶数、奇数可以是正数,也可以是负数.
数与数字的关系
两位数=(十位数字×10)+个位数字.
三位数=(百位数字×100)+(十位数字×10)+个位数字.
……
2.通过本节课内容的比较、鉴别、分析、综合,进一步提高分析问题、解决问题的能力,深刻体会方程的思想方法在解应用问题中的用途.
四、布置作业
教材P.42中A1、2、
《一元二次方程》全章教案 篇4
教学内容
一元二次方程概念及一元二次方程一般式及有关概念
教学目标
了解一元二次方程的概念;一般式ax2+bx+c=0(a≠0)及其派生的概念;应用一元二次方程概念解决一些简单题目
1.通过设置问题,建立数学模型,模仿一元一次方程概念给一元二次方程下定义.
2.一元二次方程的一般形式及其有关概念.
3.解决一些概念性的题目.
4.态度、情感、价值观
4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情
重难点关键
1.重点:
一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.
2.难点关键:
通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念
教学过程
一、复习引入
学生活动:列方程
问题(1)《九章算术》“勾股”章有一题:“今有户高多于广六尺八寸,两隅相去适一丈,问户高、广各几何?”
大意是说:已知长方形门的高比宽多6尺8寸,门的对角线长1丈,那么门的高和宽各是多少?
如果假设门的高为x尺,那么,这个门的宽为_______尺,根据题意,得________
整理、化简,得:__________
问题(2)如图,如果 ,那么点C叫做线段AB的黄金分割点
如果假设剪后的正方形边长为x,那么原来长方形长是________,宽是_____,根据题意,得:_______
整理,得:________
老师点评并分析如何建立一元二次方程的数学模型,并整理
二、探索新知
学生活动:请口答下面问题
(1)上面三个方程整理后含有几个未知数?
(2)按照整式中的多项式的规定,它们最高次数是几次?
(3)有等号吗?或与以前多项式一样只有式子?
老师点评:
(1)都只含一个未知数x;
(2)它们的最高次数都是2次的;
(3)都有等号,是方程.
因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.
一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.
一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.
例1.将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.
分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程(8-2x)(5-2x)=18必须运用整式运算进行整理,包括去括号、移项等.
解:去括号,得:
40-16x-10x+4x2=18
移项,得:4x2-26x+22=0
其中二次项系数为4,一次项系数为-26,常数项为22.
例2.(学生活动:请二至三位同学上台演练) 将方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.
分析:通过完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a≠0)的形式.
解:去括号,得:
x2+2x+1+x2-4=1
移项,合并得:2x2+2x-4=0
其中:二次项2x2,二次项系数2;一次项2x,一次项系数2;常数项-4.
三、巩固练习
教材P32 练习1、2
四、应用拓展
例3.求证:关于x的方程(2-8+17)x2+2x+1=0,不论取何值,该方程都是一元二次方程.
分析:要证明不论取何值,该方程都是一元二次方程,只要证明2-8+17≠0即可.
证明:2-8+17=(-4)2+1
∵(-4)2≥0
∴(-4)2+1>0,即(-4)2+1≠0
∴不论取何值,该方程都是一元二次方程.
五、归纳小结(学生总结,老师点评)
本节课要掌握:
(1)一元二次方程的概念;
(2)一元二次方程的一般形式ax2+bx+c=0(a≠0)和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用.
元二次方程教案 篇5
一、教材分析:
1、教材所处的地位:此前学生已经学习了应用一元一次方程与二元一次方程组来解决实际问题。本节仍是进一步讨论如何建立和利用一元二次方程模型来解决实际问题,只是在问题中数量关系的复杂程度上又有了新的发展。
2、教学目标要求:
(1)能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型;
(2)能根据具体问题的实际意义,检验结果是否合理;
(3)经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述;
(4)通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用。
3、教学重点和难点:
重点:列一元二次方程解与面积有关问题的应用题。
难点:发现问题中的等量关系。
二.教法、学法分析:
1、本节课的设计中除了探究3教师参与多一些外,其余时间都坚持以学生为主体,充分发挥学生的主观能动性。教学过程中,教师只注重点、引、激、评,注重学生探究能力的培养。还课堂给学生,让学生去亲身体验知识的产生过程,拓展学生的创造性思维。同时,注意加强对学生的启发和引导,鼓励培养学生们大胆猜想,小心求证的科学研究的思想。
2、本节内容学习的关键所在,是如何寻求、抓准问题中的数量关系,从而准确列出方程来解答。因此课堂上从审题,找到等量关系,列方程等一系列活动都由生生交流,兵教兵从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。
三.教学流程分析:
本节课是新授课,根据学生的知识结构,整个课堂教学流程大致可分为:
活动1复习回顾解决课前参与
活动2封面设计问题的探究
活动3草坪规划问题的延伸
活动4课堂回眸
这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。
活动1复习回顾解决课前参与
由学生展示课前参与题目,集体订正。目的在于回顾常用几何图形的面积公式,并且引出本节学习内容——面积问题。
活动2封面设计问题的探究
通过学生自己独立审题,找寻等量关系,教师引导学生对“正中央矩形与封面长宽比例相同”题意的理解,使学生明白中央矩形长宽比为9:7,从而进一步突破难点:上下边衬与左右边衬比也为9:7,为学生设未知数提供帮助。之后由学生分组完成方程的列法,以及取法。讲解中注重简便设法及解法的指导与评价。
活动3草坪规划问题的延伸
放手给学生处理,以学生合作完成为主。突出利用平移变换为主的解决方式。多由学生分析不同的处理方法。
活动4课堂回眸
本课小结从内容、应用、数学思想方法,获取知识的途径等几个方面展开,既有知识的总结,又有方法的提炼,这样对于学生学知识,用知识是有很大的促进的。方法以学生畅谈收获为主。