首页 > 教学教案 > 教案大全 > 分数的基本性质教案优秀7篇正文

《分数的基本性质教案优秀7篇》

时间:

在教学工作者实际的教学活动中,就不得不需要编写教案,教案是教学活动的依据,有着重要的地位。我们应该怎么写教案呢?这次为您整理了分数的基本性质教案优秀7篇,希望能够帮助到大家。

《分数的基本性质》教学反思 篇1

“分数的基本性质”是人教版小学数学五年级下册的内容,它是在学生已掌握了商不变的性质之后,并在已有应用经验的基础上进行的,对这部分内容我是这样设计教学的:

1、用故事情景引入,用猜测的方式,激发学生的学习兴趣,增强解决问题的现实性。采用学生自己亲自观察、操作,再分析怎样做的方式,把学生推上学习的主体地位,放手让学生自己去解决问题。

2、步步逼近,主动探究。用逐步向学习目标逼近的方式学习数学,在探索规律的过程中,学生不能一次完整地归纳出分数的基本性质,只能用逐步向目标逼近的方式,先引导学生概括出例题的规律,再将这个规律与书上的结论进行比较,通过比较学生可以发现归纳的规律并不精确,然后重点讨论为什么要“0除外”,使学生全面、准确地掌握分数的基本性质。接下来再沟通商不变的规律与分数的基本性质的内在联系,加深学生对分数的基本性质的理解。

3、前后呼应,体验成功。

在探究过程中充分发挥学生学习的主体作用,用实验、说解问题的过程、对比归纳规律等方式,让学生参与学习的全过程,在掌握所学知识的同时获得成功体验。应用拓展时又利用判断等式来巩固知识。学生掌握知识的情况比较理想。

整节课我设计了四个教学环节,猜想与验证,归纳再验证,巩固与应用,拓展与延伸。如从课的开始,就让学生从阿凡堤的笑中进行猜测,其实这三个分数的大小相等。让学生运用自己原有的知识经验进行验证,得出规律后并没有满足,而是继续利用“性质”的应用再次检验结果的正确性。通过学生不断猜想,不断验证,再猜想,验证,学生的兴趣比较高,他们希望能向别人证明自己的猜想,这猜想一旦被别人认可,学生的自信心就会大增,我想,长此以往,学生慢慢就会从“能学习”转化为“会学习了”。这节新授课的设计,目的是让学生学会学习,学会思考,学会创造,进而培养学生用数学的思想方法思考并解决在实际生活中所遇到的各种问题,这也是学生适应未来生活必须的基本素质。

以前我曾经听过也上过几节这样的课,感觉学生都比较容易理解,觉得这知识不难,用不着老师多讲了,也就使整节课显得有点单调,枯燥,基于以上原因,我在设计这节课时,大胆利用“猜想和验证”方法,留给学生足够的探索时间和广阔的思维空间,让学生得到不仅是数学知识,更主要的是数学学习的方法,从而激励学生进一步地主动学习,产生我会学的成就感。

本节课出现的问题也很多:

首先,在验证、交流环节学生们参与率并不高,好多学生尤其是后进生普遍是无从下手,在交流时也不主动,很多学生还停留在一知半解的状态。

其次,验证的方法也不多。学生们只应用了商不变的性质,分数与除法的关系,以及分子与分母的倍数关系,最直观最重要的用线段与实物来验证的同学很少。由于是时间关系,我没有让学生在这方面有过多的停留,显然,验证得还不够透彻,部分同学还有疑虑。以后如果再上这节课,我想在这个环节上作一些处理。就是让每位学生在自己准备的纸上画一画、折一折、或剪一剪,通过动手操作来验证自己的猜想是否正确,从而培养学生的动手能力,以及观察问题解决问题的能力。

第三,在巩固练习环节上,学生们练习的密度还不够,毕竟回答问题的同学在少数。

这节课用“猜想——验证——反思”的方式学习分数的基本性质,是学生在大问题背景下的一种研究性学习,不仅对学生提出了挑战,而且对老师也提出了更大的挑战。因为学生有了更大的思考空间,学习方式是开放的,解决问题的方式是多元的,这就要求教师备课时能站在学生的角度思考,提高教学的预设能力。同时,学生探究的过程曲曲折折,不同的学生会遇到不同的磕磕碰碰,暴露出不同的问题,甚至许多问题教师都难以预料,这些又对教师临场应变、驾驭课堂的能力提出了更高的要求。要求教师能以人为本,根据学生不同情况采取不同的教学方式。譬如,这节课“提出猜想”是非常重要的一环,它确定了研究的方向。可是如前所述,如果有些学生用类比的方法提不出猜想,怎么办?教师可以从另一个角度启发学生。相反,如果学生非常活跃,出现的猜想很多,无法在一节课中一一验证,怎么办?教师可先让学生选择其中一个最重要的猜想进行验证,学会了方法后,再分组各自选择自己喜欢的猜想验证,最后全班交流,提高了时效性。教师要充分信任学生,放手让学生做思维的先行者,不怕走弯路,不怕出问题,因为学生有了问题才更有探索的价值。如果教师善于抓住学生暴露的真实

《分数的基本性质》教学设计 篇2

第一课时

课  题:分数的基本性质

教学目标:

1、知识与技能

1、能说出分数的基本性质。

2、能说出分数基本性质与商不变性质的关系

2、过程与方法

3、会通过操作发现分数的分子分母扩大缩小的规律,并推导出基本性质。

4、会运用分数的基本性质解决数学问题。

3、情感态度与价值观

5、培养学生自主探究、合作学习、创新思维的能力。

6、让学生在学习过程中养成互相帮助,团结协作的良好品德。

7、通过知识间的内在联系,渗透辩证唯物

学情分析

从学生思维角度看,分数的基本性质,在日常生活中应用广泛,是以分数大小相等为基础的。两个分数大小相等,学生容易联想到分数的分子、分母分别相等。为此,就需要课件先通过直观动画使学生了解、两个分数的分子、分母虽然不同,但是分数大小是相等的。接着研究分数的分子、分母是按照什么规律变化的,要学生一下子说明道理比较困难,就需要一步一步分析,最终让学生自己归纳出分数的基本性质。

重点难点:

学习重点:熟悉掌握分数的基本性质及基关键词同时、同数、不为0

学习难点:分数的基本性质在具体解题环境中的具体应用

教具学具:

多媒体课件,学具袋(内含正方形纸,线段,直尺)

教法学法:

讲授法,活动探究法,任务驱动法。

活动设计:

通过正方形和线段的平分探究和的大小关系。

教学课时:

一课时

教学过程:

一、精彩导入

同学们,今天刘老师能在这里和在大家一起研究数学问题,感到非常的开心。你们想看老师的魔术表演吗?(想),好,那老师就在在座的各位面前献丑了(表演)还想看吗?(想)那我就给大家表演一个数学的魔术吧!

出示课件:56 = 1012 =1518 = 2024

师:我能写无限多个与56相等的除法算式来,这个魔术你们会吗?那我有一个除法算式45,请你写出与它相等的除法算式(点名)教师板书:45

师:哇,你真厉害!那你能给大家介绍一下,你是把被除数和除数怎么变化了,但商还是不变了?

生:(引导说出)被除数和除数同时扩大或缩小相同的倍数(0除外),商不变

师:是的,被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。这在数学中有一个专有名词叫商不变的性质。(板书:商不变的性质)

全班同学把商不变的性质说一遍,好吗?(全班齐读)

【设计意图】:

本节设计是为了

二、活动探究

师:我们知道,分数和除法是有着密切联系的,除法算式都可以写成分数,那么这些除法算式可分别改写成几分之几呢?

生:学生回答,教师出示课件:

师:上面的这些算式的商是相等的,那么由它们改写的下面这些分数的大小关系又怎样呢?

生:也是相等的,出示“=”

师:请同学们看,这些分数的分子,分母各不相同,可它们的大小却相等,难道除法中商不变的性质,分数中也有大小不变的性质?同学们,猜猜看,有没有?

生齐答:有

师:它是把分数的分子和分母怎样变化后,分数的大小不变?谁来说说?点名回答

师:你们同意吗?

生:同意

师:那刘老师把同学们的。猜想写到黑板上。

板书:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

师:数学是一门很严谨的学科,光凭猜想是不能下结论的,我们得想办法去证明它。

师:举一个很简单的例子(出示课件)

师:比如,如果根据同学们的猜想,它的分子分母同时乘2得到,这个  和是相等的,反过来看,如果把的分子和分母同时除以2,这个和的大小还是相等的。

师:那么我们用什么办法证明=呢?请同学们取出学具袋中所有学具,充分利用它们想出证明和相等的办法,谁想的办法最多,谁就是最聪明的,下面开始吧!教师行间指导。

师:同学们想了几种办法?(各不相同),想出一种方法的请举手先说说,请有两种方法的同学举手再说说,依次说完(出示学生说的课件内容)

师:同学们想出这么多办法,真不简单!(范文先生网)刘老师也有几种办法要介绍给大家,我们学过分数与除法的关系,可以用分子除以分母,用小数表示分数值你们看(出示课件:可以写为12=0.5   =2 4=0.5 )

它们的结果都是0.5,说出和的大小怎样?(相等)

师:通过刚才一系列的证明,看来分数中确实有这样的大小不变的规律,其实,数学家们早就发现了这个规律,还给它起了个名字,叫做分数的基本性质

板书:分数的基本性质

师:刚才我们把同时乘或除以的是一个相同的整数,那么同时乘或除以一个相同的小数,又会怎样呢?(出示课件:         )

师:如果把的分子和分母同时乘或除以2.5,那么又变成了几分之几呢?它们的大小还会相等吗?请同学们猜猜?(会或不会)光凭猜想是不行的,现在我们一起来验证。

师:请一大组算的分数值,请二大组算乘2.5后变成了几分之几?再请三大组算除以2.5后变成了几分之几?引导: = 再把它改成1520,求它的商, =再把它改成2.43.2,求它的商。

师:请一大组齐声说得数是0.75,二大组的得数呢?三大组呢?这三个数的商都是0.75,这说明的分子和分母同时乘2.5和同时除以2.5后大小都是怎样的?(不变的)

师:是的,分数的分子和分母不仅可以同时乘或除以相同的整数,分数的大小不变,同时乘或除以一个相同的小数,分数的大小是不变的,那么,分子和分母可以同时乘或除以任何相同的数吗?(0不能)如果分子,分母同时乘0后,变成了0,可以吗?(不可以,分母是0没有意义,另外也改变了的大小啊)(出示课件)

师:是的,这个相同的数必须0除外(板书:0除外)

【设计意图】:

本节设计是为了

三、巩固练习

师:同学们真棒啊!不仅发现了分数的基本性质,还能想出各种办法证明它,完善它,下面我们一起来看看书上怎么说的?请同学们打开课本第   页的内容,看到分数的基本性质请做上记号,看完的同学请举手示意给老师(大部分同学看完后)请把书上分数的基本性质齐读一遍。

师:同学们读的好!那么同学们会不会运用分数的基本性质解决一些问题呢?老师试目以待,敢不敢迎接老师的挑战?

师:我有一个分数(板书)你能说出与它下相等垢分数吗?每次都问:你是把它的分子,分母同时怎样?问:这样的分数你能写出多少个?

生:无数个

师:是的,任何一个分数都会有无数个分数与它相等地。

【设计意图】:

本节设计是为了

师:出示课件

例2   把和化成分母是12而大小不变的分数(请一位同学读题)并点名回答,并问你是怎么想的?

师:请同学们看“做一做”

师:再请看下一题(判断题)

⒈把分数变成后,分数的值就扩大了2倍(    )

⒉==           (    )说明”同时”很重要。

⒊==        (    )说明不仅要”同时”,还要求这个数要怎样?”相同”

⒋==        (    )

⒌==    (    )

⒍==  (    )说明了什么很重要?”0除外”

⒎==        (    )

师:通过这个题目的练习,请同学们想想,在运用分数的基本性质时,要注意哪些问题呢?(同时,相同,0除外)板书时老师把这几个词语换成红字。

师:那我们再把分数的基本性质齐读一遍,把这3个关键词重读,大家会读吗?要不要老师示范一遍?(全班齐读)

【设计意图】:

本节设计是为了

师:课件出示小明蛋糕题

小明过生日时,全家人在一起吃蛋糕,小明分给爸爸这个蛋糕的,分给妈妈这块蛋糕的,小明给自己分,谁分的最多,谁分得最少?

方法一:=                  方法二:=   =

因为                          因为

所以                          所以

师:小明真是个孝顺的孩子,分蛋糕会给爸爸,妈妈多分上些,希望同学们也要像小明一样,能够孝顺父母。

【设计意图】:

本节设计是为了

师:再请看下一题

的分子加上6后,分母要加上几,分数的大小不变。

1)(6+2)2=4   54-5=15

2)==

师:这是一道思考题,试试看,你能想出哪些办法?

【设计意图】:

本节设计是为了

四、全课总结

我想问问大家,你们今天有什么收获?(点名回答)

师:是的,只要学习就会有进步,希望同学们每天努力学习,每天都有新的进步,个个成为知识渊博而又充满自信的人。这节课我们就上到这里,同学们再见!

【设计意图】:

本节设计是为了

五、板书设计:

分数的基本性质

分子和分母同时乘或除以相同的数,分数的大小不变

商不变的性质

被除数和除数同时扩大或缩小相同的倍数(0除外),商不变

六、课后反思:

第一:我能够在选取学生作品时选取有代表性的作品,这为接下来的教学起到了重要的作用。

第二:我能较好的放手让学生自己去发现,自己去总结,这对培养学生的探索能力以及小组合作能力起到了很好的作用。但在组织学生进行分类时,我的语言不够准确,导致了部分学生分类的方向出现了偏差。

在今后的教学当中,我要加倍注意数学语言的严谨性和准确性。通过这节课的教学,我发现了很多自己的不足之处。特别在细节的处理和语言的严谨性方面,我做得还不够好,今后应加强这方面的锻炼。

《分数的基本性质》教学反思 篇3

《分数的基本性质》在分数教学中占有重要的地位,它是约分,通分的依据,对于以后学习比的基本性质也有很大的帮助,所以,分数的基本性质是本单元的教学重点之一。我在设计这节课时,大胆利用“猜想和验证”方法,留给学生足够的探索时间和广阔的思维空间,让学生得到不仅是数学知识,更主要的是数学学习的方法,从而激励学生进一步地主动学习,产生我会学的成就感。对这部分内容我是这样设计教学的:

一、成功之处:

1、 学习分数的基本性质我利用了商不变的性质进行正迁移,所以我在开课伊始板书: " 分数与除法”有什么关系 ? “根据除法和分数的关系,将这个除法算式写成分数形式,“根据商不变的性质我们可以把一个除法算式变成很多除法算式,那一个分数能不能也变出很多分数呢?”帮助学生意识到商不变规律与新知识的学习具有定的联系,为新知识的学习奠定基础。

2、在本课的学习中,为充分体现学生的主体地位,使之经历学习探究的全过程。我创设了小组合作学习提示,让学生首先猜测分数是否也有与除法同样的性质。接着充分利用直观手段,设计了折纸涂色的操作活动,通过让学生动手操作来发现三个分数之间的相等关系,接着引导学生一起探索这三个分数之间存在的规律,从而把具体的知识条理化,使学生获得具体真切的感受,帮助学生在活动中感悟分数大小相等的算理。归纳得出分数的基本性质,让学生参与学习的全过程,在掌握所学知识的同时获得成功的体验。当总结出规律后找出规律中的关键词“同时”、“相同的数”,再提出为什么这里的相同的数不能为零,并通过商不变性质的性质、分数与除法的关系,使学生全面理解掌握分数的基本性质。在教学中我还注意关注学生的多种思维方式,鼓励学生用自己的语言叙述解决问题的过程,体现了对学生观察能力、动手操作能力、逻辑思维能力和抽象概括能力的培养。

二、不足之处:

1、随着知识点的深入,很多孩子开始呈现课堂吃力现象,小组合作中体现不出自己的认识或者想法,只有听得份,困惑是怎样解决他们的困难,让他们紧跟我们学习的步伐。

2、今后小组合作提示要照顾差生的提高,创造学习数学的兴趣和耐心。

分数的基本性质教学设计 篇4

教学目的:

1、理解和掌握分数的基本性质。

2、理解分数的基本性质与商不变规律的关系。

3、培养教学内容:小学数学第十册,分数的基本性质教材第107~108页。

学生观察、比较,抽象、概括的能力及初步的逻辑推理能力。

4、应用分数的基本性质解决简单实际问题。

5、正确认识、处理变与不变的的辨证关系。

教学重点:掌握分数的基本性质。

教学难点:抽象概括分数的基本性质。

教具学具准备:多媒体及课件一套、学生每人三张同样大小的纸条、彩笔。

教学步骤:

一、1、复习旧知

除法与分数之间有什么联系?

被除数÷除数=被除数

除数

1)、你能用分数表示下面各题的商吗?

1÷2=()3÷6=()5÷10=()4÷8=()

2)、根据400÷25=16在□里填数:

(400×4)÷(25×4)=□

根据360÷90=4在□里填数:

(360÷□)÷(90÷10)=4

(2)你是怎样想的?(回忆除法中商不变性质)

商不变的性质内容是什么?

3)、引入:刚才我们复习了除法中商不变的性质,在分数中有没有类似的性质呢?

2、激趣引入:和尚分饼

从前有座山,山上有座庙,庙里有个老和尚和一个小和尚,哦,不,是三个小和尚。小和尚们很喜欢吃老和尚做的饼,有一天,老和尚做了三个同样大小的饼,还没给,小和尚们就叫开了,小和尚说:“我要一块。”老和尚二话没说,就把一块饼平均分成二块,取其中的一块给了小和尚。高和尚说:“我要二块。”老和尚又把第二块饼平均分成四块,取其中的两块给了高和尚,胖和尚抢着说:“我不要多了,我只要三块。”老和尚又把第三块饼平均分成六块,取其中的三块给了胖和尚。老和尚一一满满足了小和尚们的要求,同学们,谁会用一个数来表示三个和尚分得的饼数?板书:1/22/43/6

你们猜猜哪个和尚分的饼多?板书:1/4=2/8=4/16

这几个分数真的相等吗?让我们做个实验来证明。

3、操作感知:

(1)请同学们拿出三张大小相同的长方形纸条。

通过实验、观察、分析、讨论

①把第一张纸条平均分成2份,其中1份涂上颜色并用分数表示出来;

②把第二张纸条平均分成4份,其中2份涂上颜色并用分数表示出来;

③把第三张纸条平均分成6份,其中3份涂上颜色并用分数表示出来

然后看涂上颜色的部分是不是一样大。这说明了什么?

引导:聪明的老和尚是用什么办法来既满足小和尚们的要求,又分得那么公平的呢?同学们想知道吗?学习了“分数的基本性质”就清楚了。(板书课题)

这三个分数它们之间有什么变化规律吗?下面我们就来研究这个变化规律。

二、比较归纳揭示规律

比较这三个分数分子和分母,它们各是按照什么规律变化的?:

1、说说这三个分数的意义。

2、总结规律:

(1)从左往右观察:

a、观察手中第一、第二张纸条。

发现:1/2是把单位“1”平均分成2份,表示其中的1份。如果把分的份数和表示的份数都乘2,就得到2/4。就是1/2=1×2/2×2=2/4

b、再让学生说说从1/2到3/6,分数的分子和分母又是按什么规律变化的?

板书:1/2=1×3/2×3=3/6

c、根据上面的分析,你能得出什么结论?引导学生说出:分数的分子和分母同时乘相同的数,分数的大小不变。

(2)引导学生观察、讨论:

从右往左看,3/6到1/2,2/4到1/2,分数的分子和分母是按什么规律变化的?从中你能得出什么结论?

学生边回答边板书:3/6=3÷3/6÷3=1/2

2/4=2÷2/4÷2=1/2

并得出结论:分数的分子和分母同时除以相同的数,分数的大小不变。

3、抽象概括归纳性质

(1)引导学生把刚才出示的两条规律合并成一条规律。指出这就是“分数的基本性质”。

(2)齐读书上的结论,比一比少了些什么?讨论:为什么性质中要规定“零除外”齐读。

分母不能是0,所以分数的分子、分母不能同时乘以0;又因为除法里,零不能作除数,所以分数的分子、分母也不能同时除以0。

三、出示例2

1、把2/3和10/24化成分母是12而大小不变的分数。

引导学生思考:把3/4和15/24化成分母是12而大小不变的分数,分子要不要发生变化,变化的依据是什么?

学生独立完成。

四、多层练习巩固深化

1、巩固练习:

口答

1/5=()/159/18=()/6

2/3=()/1210/24=()/12

6/10=()/20=3/()=18/()

2、深化练习:

下面每组中的两个分数相等吗?为什么?

3/5和6/101/15和1/5

3、应用练习:

判断:

(1)分数的分子和分母都同时乘以或者除以相同的数,分数的大小不变。()

(2)一个分数的分子扩大10倍,要使分数的大小不变,分母也要扩大10倍。( )

(3)一个分数的分母除以5,分子也除以5,分数的大小不变。()

4、发散练习:你能写出和4/6相等的分数吗?

在一分钟内比一比谁写得多,让写的最多的同学报出来,给予表扬。

5、游戏:请找找我的好朋友

五、全课总结

提问:我们这节课学习了什么内容?分数的基本性质是什么?

通过今天的学习,你认为学习分数的基本性质有什么作用?

《分数的基本性质》教学反思 篇5

学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。因此数学课堂教学中必须把教师的教变成学生的学,必须深入研究学法,建立探究式的学习模式。教师应调动学生的学习积极性,向学生提供充分从事数学学习的机会,帮助他们在自主观察、讨论、合作、探究学习中真正理解和掌握基本的数学知识和技能,充分发挥学生的能动性和创造性。《分数的基本性质》的教学设计一个突出的特点就是学法的设计,从大胆猜想、实验感知、观察讨论到概括总结,完全是为学生自主探究、合作交流的学习而设计的。具体表现在:

1、学生在故事情境中大胆猜想。

通过创设“猴王分饼”的故事,让学生猜测一组三个分数的大小关系,为自主探索研究“分数的基本性质”作必要的铺垫,同时又很好地激发了学生的学习热情。

2、学生在自主探索中科学验证。

在学生大胆猜想的基础上,教师适时揭示猜想内容,并对学生的猜想提出质疑,激发学生主动探究的欲望。在探索“分数的基本性质”和验证性质时,通过创设自主探索、合作互助的学习方式,由学生自行选择用以探究的学习材料和参与研究的学习伙伴,充分尊重学生个人的思维特性,在具有较为宽泛的时空的自主探索中,鼓励学生用自己的方式来证明自己猜想结论的正确性,突现出课堂教学以学生为本的特性。整个教学过程以“猜想——验证——完善”为主线,每一步教学,都强调学生自主参与,通过规律让学生自主发现、方法让学生自主寻找、思路让学生自主探索,问题让学生自主解决,使学生获得成功的体验,增强自信心。

3、让学生在分层练习中巩固深化。

在练习的设计上,力求紧扣重点,做到新颖、多样、层次分明,有坡度。第1、2题是基本练习,主要是帮助学生理解概念,并全面了解学生掌握新知识的情况。第3题是在第1、2题的基础上,进一步让学生进行巩固练习,加深对所学知识的理解。第4题通过游戏,加深学生对分数的基本性质的认识,激发学生学习的兴趣,活跃课堂气氛。这样不仅能照顾到学生思维发展的过程,而且有效拓宽了学生的思维空间,真正做到了学以致用。

反思教学的主要过程,觉得在让学生用各种方法验证结论的正确性的时候,拓展得不够,要放开手让学生寻找多种途径去验证,而不能局限于老师提供的几种方法。因为数学教学并不是要求教师教给学生问题的答案,而是教给学生思维的方法。

《分数的基本性质》教学反思 篇6

《分数的基本性质》的教学设计一个突出的特点就是学法的设计,从大胆猜想、实验感知、观察讨论到概括总结,完全是为学生自主探究、合作交流的学习而设计的。

在教学分数的基本性质时,我充分调动学生的学习积极性,向学生提供充分从事数学学习的机会,帮助他们在自主观察、讨论、合作、探究学习中真正理解和掌握基本的数学知识和技能,充分发挥学生的能动性和创造性。因此数学课堂教学中必须把教师的教变成学生的学,必须深入研究学法,建立探究式的学习模式。具体表现在:

1、让学生在自主探索中科学验证

通过商不变性质,让学生大胆猜想的基础上,教师适时揭示猜想内容,并对学生的猜想提出质疑,激发学生主动探究的欲望。并通过创设自主探索、合作互助的学习方式,由学生自行选择用以探究的学习材料和参与研究的学习伙伴,充分尊重学生个人的思维特性,在具有较为宽泛的时空的自主探索中,鼓励学生用自己的方式来证明自己猜想结论的正确性,突现出课堂教学以学生为本的特性。整个教学过程以“猜想——验证——完善”为主线,每一步教学,都强调学生自主参与,通过规律让学生自主发现、方法让学生自主寻找、思路让学生自主探索,问题让学生自主解决,使学生获得成功的体验,增强自信心。教学目标的设定从学生已掌握除法和分数的关系,及商不变的性质的知识基础,体现学生进行的可操作。教学过程体现,学生学为主,教师为辅的教学原则。

2、让学生在分层练习中巩固深化

在练习的设计上,力求紧扣重点,做到新颖、多样、层次分明,有梯度。第1、2题是基本练习,主要是帮助学生理解概念,并全面了解学生掌握新知识的情况。第3题是在第1、2题的基础上,进一步让学生进行巩固练习,加深对所学知识的理解。第5题深化练习,把数的整除和分数的基本性质,有机的结合起来的一道综合练习。练习的设计,体现了最优化原则,层层递进。使教学效果经济有效。

3、让多媒体技术和学科教学的整合

在教学中我运用多媒体技术,设计课件,运用直观的原则,动态的过程,让学生体会一个深刻的过程,而不是一个结果,体现现代教育技术的优势,多种器官的参与。在教学中注重动手操作,折纸等,让学生学习的轻松,愉快。利用按按按的反馈功能,便于老师了解每个学生对新知的掌握情况。

总之,本课的设计着力体现“以学生发展为本”的教学理念,充分发挥学生的主体作用,使学生成为学习的主人,力求使学生在创新精神、实践能力及情感态度方面得到均衡发展。

分数的基本性质数学教案 篇7

教学目的:

1、理解分数的基本性质;

2、初步掌握分数性质的应用;

3、培养学生观察——探索——抽象——概括的能力;

4、渗透事物是相互联系、发展变化的辩证唯物主义观点。

教学重点:

从相等的分数中看出变与不变,观察、发现、概括其中的规律。

教学难点:

形成对分数的基本性质的统一认知。

教学准备:多媒体,自制演示教具。

教学过程:

一、激趣引新:

1、有位老爷爷把一块地分给三个儿子。老大分到了这块地的1/3,老二分到这块地的2/6,老三分到这块地的3/9。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈的笑起来,给他们讲了几句话,三兄弟就停止了争吵。你知道阿凡提为什么会笑?他对三兄弟说了那些话?你想知道吗?这节课我们就来解决这个问题。

2、在下面的()中填上合适的数。

1÷2=(1×5)÷(2×())=(1÷())÷(2÷4)

同学们现在已经能用分数的知识来解决问题了。

二、启发引导,探索新知。

1、下面是六年级三个班的同学到三块同样大小面积的正方形地里去种树,哪个班种植的面积大一些呢?

通过图形的平移、旋转等方法看出三个班种植面积一样大。

2.引导观察得出结论。

(1)通过拼图得到1/2=2/4=4/8

(2)引导观察、比较,提出问题:分子,分母都不相同,它们的大小为什么相同呢?

(3)引导思考探索变化规律:

从左往右看:1/2=1×2/2×2=2/4=2×2/4×2=4/8

反过来看:4/8=4÷2/8÷2=2/4=2÷2/4÷2=1/2

3.共同讨论,引导学生抽象概括出分数的基本性质:

(1)怎么做能使分数的分子和分母发生变化,而分数的大小都不变呢?

(2)变化时同时乘或除以小数可以吗?

(3)0可以吗?3/4=3×0/4×0=?(分数的分母不能为0,在除法里0不能作除数,分子和分母都乘或除以相同的数,这个数不能是0。)

归纳分数基本性质:分数的分子和分母都乘或除以相同的数(0除外)分数的大小不变。

4、学习分数的基本性质以后,感觉过去我们学过类似的性质是什么呢?(商不变的性质)

(1)练习在□中填上合适的数

1÷2=(1×5)÷(2×□)=(1×□)÷(1×4)

(2)你能把1÷2这个除法算式改写成分数形式?

你能用今天所学的知识解决老爷爷分地的问题吗?(学生交流、汇报)

5、组织练习

(1)判断:

1/5=1/5×3=1/5()

5/6=5×2/6×3=10/18()

8/12=8×4/12÷4=32/3()

2/5=2+2/5+2=4/7()

3/4=3÷0.5/4÷0.5()

分数的分子和分母都乘或除以相同的数,分数的大小不变。()

(2)画一画、填一填

(3)填空

1/2=1×()/2×()=6/()

10/24=10○()/24○()=()/12

15/60=()/203/()=9/12

6/18=()/()=()/()(有多少种填法)

6、通过练习在此性质中哪些是关键词?

7、巩固练习(选择你喜欢的一题来做)

(1)与1/2相等的分数有多少个?想象一下把手中正方形的纸无限地平分下去,可得到多少个与1/2相等的分数?

(2)9/24和20/32哪一个数大一些,你能讲出判断的依据吗?

三、课堂总结

今天这节课同学们学了分数的基本性质,有什么感想呢?回家讲给爸爸妈妈听好吗!同时希望同学们把今天所学的知识运用到今后的学习和生活中去,做一个生活的有心人。

四、课堂作业:练习十四第1——3题。

板书设计:

分数的基本性质

1/2=1×2/2×2=2/4=2×2/4×2=4/8

分数的分子和分母同时乘以一个不为0的数分数的大小不变

4/8=4÷2/8÷2=2/4=2÷2/4÷2=1/2

分数的分子和分母同时除以一个不为0的数分数的大小不变

综上所述分数的基本性质是:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。