首页 > 教学教案 > 小学教案 > 六年级教案 > 相遇问题优秀4篇正文

《相遇问题优秀4篇》

时间:

相遇问题 篇1

教学目标 

1.使学生掌握“求相遇时间”应用题的结构特点,并能正确解答求相遇时间的应用题。

2.提高学生分析问题,解决问题的能力。

3.培养中国学习联盟胆尝试,勇于探索的精神。

教学重点

1.找到与求路程应用题的内在联系。

2.正确分析解答求相遇时间的应用题。

教学难点 

掌握求相遇时间应用题的解题思路。

教学过程 

一、复习引入

(一)出示复习题

小东和小英同时从两地出发,相对走来。小东每分走50米,小英每分走40米。经过3分钟两人相遇。两地相距多远?

1.画图,列式解答。

2.订正答案

3.小组讨论:试着改编一道求相遇时间应用题。

二、探究新知

例4.两地相距270米。小东和小英同时从两地出发,相对走来。小东每分走50米,小英每分走40米,经过几分两人相遇?

1.讨论:复习题的线段图该怎样改一改。并试着画一画。

2.联系复习题的解法,尝试解答

3.订正思路

想法一:两人相遇时,所走的路程是270米。几分走270米,就是几分相遇。

270÷(50+40).

想法二:根据复习题“速度和×相遇时间=路程”,依据乘法的因积关系可得:

相遇时间=路程÷速度和。

三、反馈调节

两人同时从相距6400米的两地相向而行。一个人骑摩托车每分行600米,另一人骑自行车每分行200米,经过几分两人相遇?

1.学生独立分析解答。

2.订正答案。

3.质疑:对于“求相遇时间”应用题还有什么问题?

4.教师提问

(1)要求“相遇时间”题目中需告诉我们哪些条件?

(2)例4与复习题之间有什么联系?又有什么区别?

四、巩固练习

(一)从北京到沈阳的铁路长738千米。两列火车从两地同时相对开出,北京开出的火车,平均每小时行59千米;沈阳开出的火车,平均每小时行64千米。两车开出后几小时相遇?

(二)两艘军舰同时从相距948千米的两个港口对开。一艘军舰每小时行38千米。另一艘军舰每小时行41千米。经过几小时两艘军舰可以相遇?

教师提问:怎样验证结果是否正确?

(三)两个工程队合开一条670米的隧道,同时各从一端开凿。第一队每天开12.6米,第二队每天开14.2米。这个隧道要用多少天才能打通?打通时两队各开凿多少米?

(四)长沙到广州的铁路长726千米。一列货车从长沙开往广州,每小时行69千米。这列货车开出后开往广州,每小时行69千米。这列货车开出后1小时,一列客车从广州出发开往长沙,每小时行77千米。再过几小时两车相遇?

五、课后小结

我们今天所学的相遇问题与以前学习的行程问题有什么主要联系和区别?通过学习你有什么体会?

探究活动

猜两位数

活动目的

激发学生学习数学的兴趣。

活动方法

表演前请观众心里想好一个两位数,再请观众将自己想的两位数乘167,然后加上2500,请观众把最后得数报出来,表演者就知道观众心里想的是哪一个两位数。

例如:观众想的是59,他按规定计算出

59×167+2500=12353

表演者根据报的得数计算

53×3=159

于是就知道观众想的是59.

活动过程 

1.教师进行表演

2.学生探讨其中的奥妙

3.学生自己设计这样的几个游戏。

猜数方法

将得数末两位乘3,取乘积的末两位就是观众心中所想的两位数。

六、板书设计 

相遇问题 篇2

教学目标

1.使学生掌握“求相遇时间”应用题的结构特点,并能正确解答求相遇时间的应用题。

2.提高学生分析问题,解决问题的能力。

3.培养学生大胆尝试,勇于探索的精神。

教学重点

1.找到与求路程应用题的内在联系。

2.正确分析解答求相遇时间的应用题。

教学难点

掌握求相遇时间应用题的解题思路。

教学过程

一、复习引入

(一)出示复习题

小东和小英同时从两地出发,相对走来。小东每分走50米,小英每分走40米。经过3分钟两人相遇。两地相距多远?

1.画图,列式解答。

2.订正答案

3.小组讨论:试着改编一道求相遇时间应用题。

二、探究新知

例4.两地相距270米。小东和小英同时从两地出发,相对走来。小东每分走50米,小英每分走40米,经过几分两人相遇?

1.讨论:复习题的线段图该怎样改一改。并试着画一画。

2.联系复习题的解法,尝试解答

3.订正思路

想法一:两人相遇时,所走的路程是270米。几分走270米,就是几分相遇。

270÷(50+40).

想法二:根据复习题“速度和×相遇时间=路程”,依据乘法的因积关系可得:

相遇时间=路程÷速度和。

三、反馈调节

两人同时从相距6400米的两地相向而行。一个人骑摩托车每分行600米,另一人骑自行车每分行200米,经过几分两人相遇?

1.学生独立分析解答。

2.订正答案。

3.质疑:对于“求相遇时间”应用题还有什么问题?

4.教师提问

(1)要求“相遇时间”题目中需告诉我们哪些条件?

(2)例4与复习题之间有什么联系?又有什么区别?

四、巩固练习

(一)从北京到沈阳的铁路长738千米。两列火车从两地同时相对开出,北京开出的火车,平均每小时行59千米;沈阳开出的火车,平均每小时行64千米。两车开出后几小时相遇?

(二)两艘军舰同时从相距948千米的两个港口对开。一艘军舰每小时行38千米。另一艘军舰每小时行41千米。经过几小时两艘军舰可以相遇?

教师提问:怎样验证结果是否正确?

(三)两个工程队合开一条670米的隧道,同时各从一端开凿。第一队每天开12.6米,第二队每天开14.2米。这个隧道要用多少天才能打通?打通时两队各开凿多少米?

(四)长沙到广州的铁路长726千米。一列货车从长沙开往广州,每小时行69千米。这列货车开出后开往广州,每小时行69千米。这列货车开出后1小时,一列客车从广州出发开往长沙,每小时行77千米。再过几小时两车相遇?

五、课后小结

我们今天所学的相遇问题与以前学习的行程问题有什么主要联系和区别?通过学习你有什么体会?

探究活动

猜两位数

活动目的

激发学生学习数学的兴趣。

活动方法

表演前请观众心里想好一个两位数,再请观众将自己想的两位数乘167,然后加上2500,请观众把最后得数报出来,表演者就知道观众心里想的是哪一个两位数。

例如:观众想的是59,他按规定计算出

59×167+2500=12353

表演者根据报的得数计算

53×3=159

于是就知道观众想的是59.

活动过程 

1.教师进行表演

2.学生探讨其中的奥妙

3.学生自己设计这样的几个游戏。

猜数方法

将得数末两位乘3,取乘积的末两位就是观众心中所想的两位数。

六、板书设计

相遇问题 篇3

现代小学数学第七册第四单元综合应用说课设计

教案初稿)一,          知识准备。1、练习(1)    邮递员骑自行车从甲地到相距3000米的乙地送信,速度是200米/分钟。多少时间后能够到达?3000÷200=15(分钟) 说出你所依据的数量关系:板书:速度*时间=路程(2)修一条隧道,甲队的速度是12米/天,6天修完。这条隧道长多少米?口答:列出算式并说出你列式的依据。12*6=72(米)  说说数量关系:板书:工作效率*工作时间=工作总量2讨论:甲,乙两队合修一条隧道,可以怎么修?      有三种情况:第一、两队实行倒班制;第二、从两端同时开始开凿。第三、两队从一端一起开凿。补充问题:哪一种的效率最高哪?结果会怎样?(进行猜测,引起认知冲突。)甲、乙两队可以分别从两端同时开凿。结果会相遇。揭示课题:今天我们就来研究两个人或物同事合作一个工作的有关问题。 反思:准备联系,主要是为了能够为了接受新知识进行的巩固和唤醒相应部分的知识。同时,也考查学生的应变能力和利用自己的经验、知识来解决问题的锻炼。 二,          问题展示。1、出示例1,两个工程队合开一条隧道。同时从一端开凿。甲队的进度12米/天,乙队的进度是14米/天,由于使用了高科技经过6天打通。这条隧道长多少米?(1)    读题,理解题意。①    已知条件:a、  甲队工作效率——12米/天;b、乙队工作效率——14米/天;c、打通所用的时间——6天。D、合开,同时从一端开凿。② 未知条件:(求什么?)  隧道的长度是多少米?乙队                                        甲队                                                                                                            14米/天                                                                    12米/天                           ?米利用课件加强学生对问题的理解,列出算式解决问题:12*6+14*6     分别表示的意义:   =72+84      12*6表示甲队的工作量,14*6表示乙队的工作量=156(米)  工作总量=甲队的工作量+乙队的工作量答:隧道长度是156米。 (12+14)*6  “12+14”表示的是什么?(工作效率和)=26*6    =156(米)         答:隧道长度是156米。 (12+14)*6        甲,乙1天开凿的米数之和*天数=隧道长度。  板书:工作效率和*时间=工作总量。 这道题表现了一个怎样的数量关系哪?与我们以往学习的有什么区别? 反思:这里是全课的重点,也是难点。在原有的学习数量关系的基础上可以顺利地接受并理解地一种解决方法。但是,第二种则需要进一步理解。为什么可以把两队的工作效率相加?是讲解的过程中遇到的最大的问题。这里最主要的解决方法是利用课件的直观和学生抽象思维来解决。所以这里课件一定要注意直观性和明确性。 2、展示例2:    两个邮递员同时从甲、乙两地相对而行,骑摩托车的速度是每分钟800米,骑自行车的速度是每分钟200米。他俩经过3分钟相遇。甲、乙两地相距多少米?邮递员1                                     邮递员2                                                                                                              800米/分                                                              200米/分 (1)    你是怎样解决这个问题的?800×3+200×3 =2400+600=3000(米)      中间的过渡过程,简略地给出。然后,引导学生列出下面的算式。×           (800+200)*3     “800+200”表示的是什么?=1000*3    =3000(米) 答:甲、乙两地相距3000米。 根据例1,你能总结出他根据的是怎样的数量关系吗?速度之和*时间=总路程 反思:在例2当中,最主要的是想说明不仅在工作效率当中可以使用“和”,在路程的问题当中,也可以使用“和”的概念。把所学习过的数量关系进一步扩展和达成教育教学目标 。同样这也是对学生元认知的直接运用。    3、展示例3:    两个邮递员同时从相距3000米的两地相对而行,其摩托车的速度是每分钟800米,骑自行车的速度是每分钟200米。经过几分钟两个邮递员相遇?(1)    读题,理解题意 已知条件:总路程;摩托车和自行车的速度; 未知条件:相遇的时间 800m                                          200m     _____________________________________________                                        3000m3000÷(200+800)=3000÷1000=3(分)       答:经过3分钟相遇。 反思:这是针对于本节课内容的变式训练,主要目的在于开阔学生的思路达到灵活和多角度掌握知识的目的。另外也起到锻炼学生有序思考的作用,在数学中,这是非常重要的。  三、小结。这节课你都有哪些收获,你知道了哪些新的数量关系?工作效率之和*工作时间=工作总量;速度之和*时间=总路程 反思:及时地进行扩展,对上面的数量关系增强抽象的变式的训练。单纯从数量关系上面变式有利于学生抽象思维的发展和元认知的提高。从而更好地完成教育教学目标 。 四、巩固与提高。(首先比较两题之间的区别,然后根据全新的数量关系列式计算。) (1)    两列火车同时从两个站相对开出,一列火车的速度是每小时71千米的速度,另一列火车的速度是每小时69千米,开出后3小时相遇。两个车站的距离是多少千米?(2)    两个车站的距离是420千米,两列火车同时从两地车站相对开出,一列火车的速度是每小时71千米,另一列火车的速度是每小时69千米。两列火车多长时间后相遇? 五、教学后记:

相遇问题 篇4

教学目标 

(一)理解相遇问题的特点,并学会解答求路程的相遇问题。

(二)通过观察、比较、分析,提高学生灵活解答应用题的能力,培养学生合作意识。

教学重点和难点

重点:掌握求路程的相遇问题的解题方法。

难点:理解相遇时,两人所走路程的和正好是两地的距离;相遇时间为两人共同所走的同一时间。

教学过程 设计

(一)复习准备

1.口头列式并计算:

小明每分走50米,小华每分走60米。

(1)小明5分走多少米?(50×5=250(米)。)

(2)小华5分走多少米?(60×5=300(米)。)

(3)小明、小华5分共走多少米?(①50×5+60×5=550(米);②(50+60)×5=550(米)。)

(4)小明5分比小华少走多少米?(①60×5-50×5=50(米);②(60-50)×5=50(米)。)

2.小结:行程问题的三量关系是什么?(速度×时间=路程;路程÷速度=时间;路程÷时间=速度。)

(二)学习新课

1.认识相遇问题。

(1)请两名同学到教室前边迎向走,相遇为止。

(2)同学们注意观察并说出他们是怎么走的?(同时,从两地,相对而行。)

(3)再走一遍,注意观察两人之间的距离有什么变化?(两人之间的距离越来越近,最后变为零。)

教师:当两人之间的距离变为零时,我们就说两人“相遇”。

具有“两物、同时从两地相对而行”这种运动特点的行程问题,叫做行程问题中的“相遇问题”。(板书:相遇问题)

(4)相遇问题与以前学习的行程问题有什么不同?(以前学习的行程问题是研究一个物体的运动情况,相遇问题是研究两个物体同时运动的情况。)

2.准备题。

张华家距李诚家390米。两人同时从家里出发,向对方走去。张华每分走60米,李诚每分走70米。

(1)学生打开书,看线段图填表。

走的时间/张华走的路程/李诚走的路程/两人所走路程的和/现在两人的距离

(2)同桌二人用一把尺子、两块橡皮合作演示张华与李诚的行走过程,并说出每过1分后,两人所走路程的和与现在两人的距离。

(3)思考:

①出发3分后,两人之间的距离变成了多少?(出发3分后,两人之间的距离变成了零。)

说明3分后,两人相遇了。

②两人所走路程的和与两家的距离有什么关系?(两人所走路程的和+现在两人的距离=两家的距离。当3分后,两人相遇时,即两人之间的距离为零时,两人所走路程的和就与两家的距离相等。)

小结:相遇时,两人所走路程的和就是两家的距离。

3.学习例5:

小强和小丽同时从自己家里走向学校,小强每分走65米,小丽每分走70米。经过4分,两人在校门口相遇。他们两家相距多少米?

(1)此题是不是相遇问题?怎么看出来的?

(2)学生用学具演示小强和小丽的行走过程。

思考并讨论:

①校门口是否在两家的中点?为什么?(小强的速度比小丽的慢,相遇时离小强家较近。)

②根据题意画出线段图。

③两人4分后在校门口相遇,说明他们两家相距的米数正好是什么?(4分后相遇,说明他们两家相距的米数正好等于4分所走的路程的和。)

(3)怎样求两人4分走的路程和呢?

学生列式计算,并讲解。

解法1:

答:他们两家相距540米。

解法2:

重点理解第二种解法。

①两人同时走1分,他们之间的距离有什么变化?(学生演示学具,缩短了65+70=135(米)。)

1分后缩短的135米,叫什么呢?(小强的速度+小丽的速度=速度和)

②2分后缩短了几个速度和?(学生演示学具)

③3分后缩短了几个速度和?

④4分后缩短了几个速度和?

小结:速度和与两家的距离有什么关系?

速度和×相遇时间=路程和。

(4)比较以上两种解法有什么联系和区别?哪种解法简单?为什么?

讨论得出:

区别:从数量关系上看,第一种解法是用两人各自的速度乘以时间,得出两人各自走的路程,然后再求两人所走路程的和;第二种解法是根据两人同时出发后相遇,所走时间相同,可以先算出两人每分一共走多少米?也就是先求“速度和”,再乘以时间。

联系:从数学知识上看,两种解法的算式之间的联系正好符合乘法分配律。

第二种解法比较简便,它是第一种解法的简便运算。

(三)巩固反馈

1.P59“做一做”。

(1)学生独立解答后,分析解题思路,订正。

解法1:54×5+52×5=270+260=530(米)。

解法2:(54+52)×5=106×5=530(米)。

(2)用哪种方法解答?((44+52)×2.5=96×2.5=240(千米)。)

2.研究 P61:2。

(1)思考:这题是不是相遇问题?它与相遇问题有什么不同?(相遇问题:相对而行;而此题:相背而行。)

(2)怎样解答?((44.5+38.5)×3=83×3=249(千米)。)

为什么解答方法与相遇问题相同?(相遇问题:两车之间距离在缩短;相背问题:两车之间距离在扩大。所求路程都是两车在相同时间内所行路程的和,所以解答方法相同。)

3.将例题改编成:

(1)如果同时行5分,会出现什么情况?此时两人相距多少米?

(65+70)×(5-4)=130(米)。)

(2)如果4分后两人还相距150米,他们两家相距多少米?

(65+70)×40+150=690(米)。)

(3)如果小强先走2分后小丽才出发,经过4分相遇,两家相距多少米?

(①(65+70)×4+65×2=670(米);②65×(4+2)+70×4=670(米)。)

4.课后作业 ;P61:1,3。

课堂教学设计说明

相遇问题是研究两个物体同时运动的情况,两个物体的运动情况是多种多样的。相遇问题关键是要弄清每经过一个单位时间,两个物体之间的距离的变化情况。由于学生在这方面的生活经验较少,往往不易理解相向运动的变化特点。因此在复习了行程问题的速度、时间和路程的关系后,通过两名同学的表演,引导学生观察、理解相遇问题的特点。又多次通过用学具演示及同桌的合作,不仅使学生理解了什么是相遇,相遇时两人所走路程的和正好是两地的距离及相遇时间为两人共同所走的同一时间这一教学难点 ,还提高了学生动手操作的能力,培养了学生的合作意识。

练习的设计由易到难,在学生掌握了基本的相遇问题的解答方法后,又出现了各种变化情况,有利于防止学生死套公式,形成思维定势,提高学生灵活解答应用题的能力。

板书设计 

相遇问题

解法1:

小强所走路程+小丽所走路程=路程和

65×4+70×4

=260+280

=540(米)

解法2:

速度和×相遇时间=路程和

(65+70)×4

=135×4

=540(米)

答:他们两家相距540米。