首页 > 教学教案 > 小学教案 > 六年级教案 > 应用题(优秀4篇)正文

《应用题(优秀4篇)》

时间:

应用题 篇1

主备人:李镇

复备、使用者:刘永、郑建明

本学期总第5课时

本单元(课)第 5课时

授课日期:

课题:列一元一次方程解

课型:新授课

、1、会正确找出一元一次方程中存在的相等关系

2、通过列方程解,提高学生分析问题与解决问题的能力

重点、难

重点:找出中存在的相等关系

难点:正确分析中的条件

关键:理解题意,并能正确找出中的量与量之间的关系

教 学 过 程

知识点

资料准备

教师活动

学生活动

时间分配

1、列一元一次方程解题的步骤

2、例题探究

电脑

投影仪

电脑

投影仪

师:列一元一次方程解的步骤有哪些?

师:出示例题

已知某电视机厂生产 三种不同型号的电视 机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元。某商场根据市场调查花9万元从该厂购进两种不同型号的电视机50台。请你分析一下是哪两种型号的电视机?

(教师引导,由学生自己解题过程)

生:思考议论回答

找等量关系

设未知数

列一元一次方程

解方程

写出答案

生:讨论

该问题需要分类讨论,有三种可能的情况

可能购买的是甲、乙两种型号的电视机,也可 能是乙丙或甲丙。

8分

20分

A组:

16个蓝球队进行循环比赛,每个队赢一场得2分,输一场得1分,比赛弃权得0分。某队参加了循环赛中的15场比赛,共得26分。这个队赢几场?输几场?

B组:

一列火车长250米,速度为60千米/时,一越野车其车速为90千米/时,当火车行驶时,越野车与火车同向而行,由列国车车尾追至车头,需要多长时间 ?

应用题 篇2

教学目标�

(一)使学生初步掌握先求总数的两步应用题的解题方法。

(二)学会找两步应用题的中间问题。

(三)培养学生分析解答应用题的能力。

教学重点和难点

重点:掌握两步应用题的结构特点。理解为什么要先求总数和怎样求总数。

难点:找两步应用题的中间问题。

教学过程�设计

(一)复习准备

启发谈话:

我们已经连续学习了两步计算的应用题,同学们学习得很好,今天我们继续学习两步应用题,你们愿意学吗?下面我们先看一道简单的应用题。(投影出示)

工人们修一条长120米的路,每天修15米,几天修完?

师:这道题讲的是什么事?涉及哪三种量,已知哪两个量?求的是什么?

[工人叔叔修路的事。涉及总工作量、工作效率和工作时间。已知工作总量(120米)和工作效率(每天修15米),求工作时间(几天修完)]

120÷15=8(天)

(二)学习新课

师:我们刚才练习的是一道一步计算的应用题,下面我们把它改编成一道两步运算的应用题,你们看看改编后的这道两步运算的应用题和练习题什么地方发生变化?什么地方没变?

出示例题:

工人们修一条路。每天修12米,10天修完。如果每天修15米,几天修完?

师:同学们可以互相说一说,然后再回答。

生:例题是三个已知条件,例题和练习题的问题相同,都是求几天修完。

师:为了帮助大家理解题意,请把已知条件和所求问题,在线段图上表示出来。(投影出示线段图)

师;想一想,“每天修15米”,要求“几天修完”,必须知道什么条件?也就是说要求工作时间,已知工作效率是“每天修15米”,还要知道什么条件?

生:还要知道总工作量。(这条路有多长)

师:在题目中能不能找出总工作量?

生:根据“每天修12米,10天修完”这两个已知条件,也就是工作效率(12米)和工作时间(10天)可以求出总工作量,也就是这条路有多长。

师:同学们说得很好,抓住了解题的关键,请你们用分步和综合的方法,解出这道题。

(有些同学写在玻璃片上)

(1)这条路长多少米? 综合列式:

12×10=120(米) 12×10÷15

(2)几天修完? =120÷15

120÷15=8(天) =8(天)

答:每天修15米,8天修完。

订正时,学生可以两人交换,投影出示,老师在黑板上板书。

师:我们把例题的问题改变一下,(在黑板上出示)

工人修一条路。每天修12米,10天修完。如果要求6天修完,每天应修多少米?

想一想,“要求6天修完,每天应修多少米”必须知道什么条件,也就是中间隐蔽条件是什么,怎样解答?请独立做在作业�本上。

(要求列综合算式解答)

12×10÷6

=120÷6

=20(米)

答:6天修完,每天修20米。

订正时,要求说出每一步是什么意思。老师同时板书。

引导学生比较这两道题的共同点。使学生认识到这两道题的第一步都要先求出这条路全长,也就是总工作量。例题是根据总工作量和工作效率,求出工作时间。改编后的题是根据总工作量和工作时间,求出工作效率。

(三)巩固反馈

做一做:

1.小华读一本书,每天读12页,6天可以读完。如果每天读9页,几天可以读完?

师:读题、审题,请先用线段图表示出已知条件和问题,想一想,中间隐蔽条件是什么?怎样解答?可以互相说一说。

(根据每天读12页,6天可以读完,可以求出这本书共有多少页?再根据这本书共有的页数与实际每天读9页,就可以求出需要几天读完,中间的隐蔽条件是这本书共有多少页)

综合列式:12×6÷9

=72÷9

=8(天)

答:8天可以读完。

订正时,讲一讲每一步是什么意思。

2.小华和小刚读同样的一本书,小华每天读12页,6天读完。小刚要8天读完,平均每天要读几页?

师:理解“小华和小刚读同样的一本书”是什么意思?

独立解答,然后讲一讲每一步是什么意思。

12×6÷8

=72÷8

=9(页)

师:下面看一组题,请说出这组题相同的地方是什么?然后迅速列出综合算式。不用计算。

1.同学们做操。每行站30人,正好站16行。如果每行站24人,可以站多少行?

2.同学们做操。每行站30人,正好站16行。如果站成12行,每行站多少人?

1.30×16÷24

2.30×16÷12

(共同点,“每行站30人,正好站16行。”根据这两个条件,可以求出中间的隐蔽条件,也就是总人数)

师:请根据我们今天学习的两步应用题的分析方法,独立解答下面的题。

3.幼儿园买来8箱苹果,后来改用10个小箱装这些苹果。如果每小箱装16千克,大箱每箱装多少千克?

综合列式:

16×10÷8

=160÷8

=20(千克)

答:大箱每箱装20千克。

小结今天我们学习的两步应用题,在解答上有共同的特点,第一步都是先求总数,这一步是解答这类应用题的关键,也是两步应用题要找的隐蔽条件。分析应用题时,可以从问题入手分析逐步推到已知条件,或者从已知条件入手逐步推到所求问题,还可以从中间隐蔽条件进行分析,有时根据具体情况,几种分析方法交替使用,更容易找到解答方法。

作业�:第113页2,3,4题。

课堂教学设计说明

本节课是在学习了归一应用题的基础上教学归总应用题。归总应用题和归一应用题是相互联系的,是今后学习较复杂应用题的基础,教学这部分内容,重点要放在教给学生分析应用题的方法。

教学时,从一步应用题导入��.通过一步应用题改编成两步计算的应用题,使学生理解,解两步应用题,关键是找出中间的隐蔽条件。教学中通过例题和练习,使学生初步掌握分析应用题时,可以从条件入手分析,一直推到所求问题,也可以从问题出发分析到已知条件,或利用找中间隐蔽条件方法分析。通过练习比较,使学生掌握解答今天所学的两步应用题的解题规律是先求出总数。为将来学习反比例应用题打下基础。

应用题 篇3

教学目标�

(一)掌握解答应用题的一般步骤,会分析应用题的数量关系,能用综合算式解答三步计算的应用题。

(二)提高学生分析问题和解决问题的能力,培养学生认真审题,自觉进行检验的良好学习习惯。

教学重点和难点

重点:学会用综合算式解答三步计算的应用题。

难点:使学生学会分析应用题的数量关系。

教学过程�设计

(一)复习准备

1.口答:

(1)商店运来苹果20箱,每箱15千克,共运来苹果多少千克?

(2)粮店运来大米1000千克,卖出350千克,还剩多少千克?

(3)修路队修路,每天修250米,修1000米需要几天?

2.根据问题写出相应的关系式。

(1)还剩多少米没修?(全长的米数-已修的米数=还剩的米数。)

(2)平均每天生产多少个零件?(要生产的零件总数÷做的天数=平均每天做的数量。)

(3)剩下的零件要几天做完?(剩下的零件数量÷平均每天生产的数量=生产的天数。)

(二)学习新课

1.引入谈话。

我们解答过很多应用题,今天我们继续研究解答较复杂的应用题,并归纳出解答应用题的步骤及检验的方法。

2.学习例1:

一个服装厂计划做660套衣服,已经做了5天,平均每天做75套。剩下的要3天做完,平均每天要做多少套?

(1)审清题意。

①默读题,找出已知条件和所求问题。

②摘录条件和问题。

③用线段图如何表示题意?

学生试画线段图:

(2)分数数量关系。

①题目中哪两个条件有密切关系?根据这两个条件可以得到什么新的数量?(根据已经做了5天,平均每天做75套,可以得到已经做了多少套。列式:75×5=375(套)。)

②要求后3天平均每天做多少套,需要什么条件?(要求后3天平均每天做多少套,需要求出后3天做了多少套。)

③后3天做了多少套怎样求呢?(计划做的套数-已经做的套数=剩下要做的套数。)

(3)学生列式计算。

学生讲解每步求出的表示什么?

教师根据学生讲解,写出数量关系分析图:

综合法:

分析法:

比较综合法与分析法的区别:综合法的分析思路是从已知条件推出所求问题;分析法的分析思路是从问题入手,找到所需要的条件。

根据数量关系分析图列出综合算式。

(4)检验并写出答题。

检验方法:

①按照题目的条件和问题,依次重新检查列式和计算对不对;

②把得数当作已知数,根据题里的数量关系,一步步地计算,看得到的数是不是符合原来的一个已知条件。

如:看平均每天是不是做75套。

试一试:还可以怎样进行检验。

看原计划是不是做660套?(75×5+95×3)

看已经做的是不是5天?((660-95×3)÷75)

看剩下的是不是要做3天?((660-75×5)÷95)

思考:这道题有几种检验方法?为什么?

小结:检验时可把任意一个已知数作为检验的标准,所以题目中有几个已知数,就至少有几种检验方法。

3.小结解题步骤。

根据例1的解题过程,说说解答应用题的步骤是怎样的?

归纳总结如下:

(1)弄清题意,并找出已知条件和所求问题;

(2)分析题目中的数量关系,确定应先算什么,再算什么……,最后算什么;

(3)确定每一步该怎样算,列出算式,算出得数;

(4)进行检验,写出答题。

(三)巩固反馈

1.独立解答:P48“做一做”。

(1)学生独立解答;

(2)订正。(500-50×4)÷5;

(3)检验。

2.将上题改编为:

(1)四年级和五年级要给500棵树浇水,四年级每天浇50棵,浇了4天;剩下的由五年级来浇,平均每天浇60棵,还需要浇几天?

(2)四年级和五年级要给500棵树浇水,四年级每天浇50棵,浇了4天;剩下的由五年级来浇,平均每天比四年级多浇10棵,一共需要浇多少天?

学生解答后订正,并分析数量关系。

①(500-50×4)÷60;②(500-50×4)÷(50+10)+4。

3.P50:4。

(1)学生独立解答。

(2)订正:(2640-240)÷(240÷3)。

(3)思考:

这题与例题有何异同?(同:都是三步应用题;异:例题已知4个数。而这题已知3个数,其中240用到了两次。)

4.课后作业�:P50练习十二:1,2,3。

课堂教学设计说明

本节课通过对例题的分析,引导学生对用算术方法解应用题进行较系统的归纳整理,学生掌握用算术方法解答应用题的一般步骤及分析数量关系的方法。

一步应用题是解答复合应用题的基础和前提。因此,新课前复习了一步应用题及根据问题写数量关系式的练习,使学生熟练掌握,为学习多步题做好知识和能力上的准备。

例题的教学,重视学习方法的指导。如审题,可用摘录条件和问题的方法,也可用线段图表示。放手让学生尝试画线段图,来帮助学生弄清题意,掌握应用题的结构,使学生养成画图习惯,不断提高画图的能力。分析数量关系,引导学生用综合法和分析法进行分析。在条件与问题之间架起一座桥梁,找到解题思路,提高学生逻辑推理的能力。解答后引导学生由多种方法检验,培养学生良好的学习习惯及做事认真负责的态度。

板书设计�

应用题

例1 一个服装厂计划做660套衣服,已经做了5天,平均每天做75套。剩下的要3天做完,平均每天要做多少套?

分步:

75×5=375(套)

660-375=285(套)

285÷3=95(套)

综合:

(66-75×5)÷3

=(660-375)÷3

=285÷3

=95(套)

答:后3天平均每天做95套。

综合法:

分析法:

应用题 篇4

教学目标�

(一)进一步掌握三步应用题的结构,熟练分析数量关系,提高学生解答应用题的能力。

(二)通过一题多变,发展学生的思维能力。

教学重点和难点

使学生掌握分析应用题的数量关系的方法。

教学过程�设计

(一)复习准备

1.口答:

(1)小明每天看书8页,5天能看多少页?

(2)一个长方形的长是10米,比宽多3米,它的面积是多少平方米?

(3)光明塑料厂,计划每天生产塑料6吨,实际每天比计划增产2吨,实际每天生产塑料多少吨?

(4)一台织布机每时织布15米,一匹布120米,需要织几时?

2.根据要求补充问题并解答:

工人们修一条路。如果每天修12米,10天修完,________?

(1)使之成为一步应用题。(这条路全长有多少米? 12×10=120(米)。)

(2)增加一个条件,使之成为一道两步应用题。(现在每天修15米,几天修完?12×10÷15=8(天)。)

(3)改变增加的条件,使之成为一道三步应用题。(即为例3。)

(二)学习新课

1.学习例3 工人们修一条路。如果每天修12米,10天修完。现在每天比原来多修3米,现在几天修完?

(1)复习应用题的解题步骤。(①审题(摘录条件和问题或画线段图);②分析数量关系;③列式计算;④检验答题。)

(2)学生按以上解题步骤试解。(遇到问题,同桌或小组商量解决。)

(3)学生讲解,订正。

①审题。

②分析数量关系。

综合法:

分析法:

③列式计算:

分步:

综合算式:

④检验。

看全长是否相等:

12×10=120(米) (12+3)×8=120(米)

看现在每天比原来是否多修3米。

12×10÷8-12=3(米)

看原来是否是10天修完。

(12+3)×8÷12=10(天)

2.改变复习题2中的(2)题的问题,使之成为三步应用题。工人们修一条路。如果每天修12米,10天修完。现在每天修15米,可以提前几天修完?

(1)学生独立解答;

(2)同桌互说解题思路;

(3)订正。

3.小结。

思考:通过改变题目的哪部分,两步应用题可以变成三步应用题?为什么?讨论得出:通过改变题目的条件或问题,两步应用题可以变成三步应用题。因为改变题目的条件或问题都可使题目中的一个直接条件变成间接条件,因此可以使两步应用题转化为三步应用题。

(三)巩固反馈

1.独立解答P50“做一做”。

(1)解答后订正。

(2)将上题改为:一个蔬菜站运一批黄瓜。每筐装20千克,可以装50筐。如果每筐装25千克,要少装多少筐?

学生解答后,说解题思路。

(3)将以上两道三步应用题,改变条件或问题,使之成为两步应用题。一个蔬菜站运一批黄瓜。每筐装20千克,可以装50筐。现在每筐装25千克,要装多少筐?

2.小红看一本课外书,每天看16页,10天看完。

请你补充一个条件及问题,使之变成三步应用题。

3.课后作业�:P51:12;P52:13,14。

课堂教学设计说明

本节课通过解答归总应用题,进一步巩固应用题的解答步骤及分析方法。无论是复习、练习,还是新课,通过一题多变,把两步应用题转化为三步应用题,同时把三步应用题缩为二步应用题,学生进一步理解两步题与三步题的联系,明确三步应用题的结构,再改编应用题的同时,发展了学生的思维能力。

板书设计�

应用题

例3 工人们修一条路。如果每天修12米, 10天修完。现在每天比原来多修3米,现在几天修完?

分步列式:

12×10=120(米)

12+3=15(米)

120÷15=8(天)

综合算式:

12×10÷(12+3)

=120÷15

=8(天)

答:现在8天修完。