《《求正方形的周长》三年级数学教案》
《求正方形的周长》三年级数学教案
作为一名人民教师,通常需要准备好一份教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。那么优秀的教案是什么样的呢?以下是小编整理的《求正方形的周长》三年级数学教案,欢迎阅读,希望大家能够喜欢。
一、说教材
1、说课内容
九年义务教育六年制小学数学第五册第100页“正方形的周长”。
2、本节课在教材中的地位、作用和意义
求正方形的周长,是在学生已熟悉了正方形、长方形和平行四边形的图形特征上进行教学的。本节课着力帮助学生更好地理解计算周长的方法,学生理解好周长的概念,为以后学习求各种图形的周长提供了必要的前提。而正方形周长的求法是在学生理解了周长含义的基础上,进而让学生根据正方形的特点,发现求正方形周长的方法,为下一节学习求长方形的周长提供了自我探索的方向和方法。
3、本节课的教学目标
根据大纲的要求和教材的特点,结合三年级学生的实际水平,本节课可确定如下的教学目标:
⑴认知目标:①使学生知道周长的含义。
②正确计算正方形的周长。
⑵能力目标:①使学生在头脑中能够建立起周长的概念,并会计算正方形的周长。
②能动手量一量,自己算一算,通过讨论解决正方形周长的计算方法和算理,培养学生的逻辑思维能力和抽象概括能力和抽象概括能力。`
⑶情感目标:通过实际操作,激发学生的学习兴趣,培养学生观察和独立思考的习惯,从而使学生达到主动发展的目的。
4、本节课的教学重点、难点和关键
根据以上的分析,不难看出本节课的教学重点是:知道周长的含义,会计算正方形的周长;教学难点是:理解周长的概念,简便计算正方形的周长。而充分运用直观手段,特别是加强教具演示及学具操作,让学生手动、脑想、眼看,使学生在多种感观的协调活动中积累感性认识,发展空间观念,从而更好地理解、掌握正方形有关的几何初步知识则是本节课的关键。
二、说教法、学法
爱迪生曾说过:“我从来没有做过一次偶然的发明,我的一切发明都是深思熟虑,严格实验的结果。”教学也是一样,学生的动作和思维密不可分的,让他们亲手去拼一拼、围一围、量一量,使一些抽象的数学概念转化为形象化、具体化,使他们在动手操作中获取新知识。根据本节课教材内容和编排特点,按照学生认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,我主要采用了操作尝试、观察对比、发现归纳等方法进行教学。
“一切真理都要让学生自己去获得,由他重新发明,而不是草率地传递给他。”为此,我在教学中通过让学生尝试围出一个三角形和一个正方形后,分别求出它们要用多长的线,尝试感受“所有边长的总和”是指什么?继而在教师的引导下尝试求两个正方形物体的周长,让学生观察、对比,从而发现求正方形周长和的一般方法和简便方法。
如果学生能把概念、公式、方法等,通过自己的努力尝试去发现和创造出来。那正是我们课堂教学中孜孜以求的最高境界,也是我们培养学生创新能力的迫切要求。为此,我在本节课的教学中力求做到这一点。
为了更好实现以上的观点,我在课前准备了自制的课件、钉子板、尺子、正方形的硬纸,而学生准备好钉子板、橡皮筋、尺子等,为课堂教学作好充分的硬件的准备。
三、教学程序设计
为了突出重点,突破难点,达到已定的教学目标。我主要安排了以下的几个教学环节。
㈠紧扣新课,简要复习
⒈6+6+6+6=?有什么特点,有什么简便算法?(64)
⒉观察图形,说出各种图形的名称。
⒊提问学生:正方形有什么特点?(突出边和角的特点)
【在第1题里复习了求几个相同加数的和用乘法算比较简便,并且复习了乘法式子的含义,为推导求正方形的周长的简便算法作铺垫;第2、第3题不但承接了上节课的内容,而且为本节课创设情境,复习了正方形的特点,正好一矢中的地把求正方形周长的关键点了出来。因此这三道复习题,一方面帮助学生找到新旧知识最近的连接点,为新知的学习做好铺路架桥的工作;另一方面创设好教学情景,唤起学生学习的欲望。】
㈡操作感知,探究方法
这一环节是课堂教学结构的主体部分,是学习知识、培养能力的主要途径之一,是一节课的关键环节。为了分散难点,我安排了三个层次:
第一层:揭示课题,明确目标
为了让学生更明确这节课的教学内容和教学目的,我不失时机的在复习后,紧接着说:同学们,我们前两节课研究了正方形的角和边,今天,我们再来研究正方形的周长(板书课题)。你们在这节课里想知道什么?想学会什么?
【《大纲》指出“学生是教学活动的主体”,让学生自己说出一节课里想知道什么,想学会什么,一方面把学习的主动权交给学生,从学生的角度来说:让我学转变成我要学;另一方面让学生带有目的参与学习,能减低学生学习的盲目性。】
第二层:操作尝试,理解概念
为了让学生更好地理解“周长”的概念,我设计了两个实验。
实验一:我先出示钉子板,围了一个三角形,并留下一个疑问:围成这个三角形要用多长的线?然后让学生利用四人小组做实验:围出一个任意三角形,填好实验报告(三角形有条边,它们分别长毫米、毫米、毫米、这条边一共长多少毫米?列式为。也就是说,围成这个三角形要用毫米长的线。)学生通过讨论、互助,根据实验报告的提示都能先量出三角形三条边长,再把这三条边长加起来作为围成这个三角形所用的线。这个实验的目的是让学生对“围成一个图形所用的线”与“这个图形的边长建立一个初始关系。
实验二:我再出求另一块钉子板,围了一个正方形,又问:这个正方形的所有边长的总和是多少?然后让学生通过两人合作,围出一个任意大小的正方形,填好实验报告。根据学生的汇报,让学生从正方形的特点入手,进一步明白:正方形有四条边,而且它们都相等。因此,测量了其中的一条边长后,其余的就不用测量了。那么,这四条边长的总和就迎刃而解了。这个实验,学生从“围成一个图形所用的线”发展到“正方形四条边长的总和”,从语言的表达和理解上越来越贴近“周长”的概念了。
那么,学生在以上两个实验的认识基础上,再经老师的适当引导,周长的概念就呼之欲出了。在教学中,我是这样引导学生的:要知道围成一个三角形或正方形要用多长的线,其实是算出围成这个三角形或正方形的所有的.总和。学生通过思考,基本能填上“边长”两个字,那时我就可以揭示“凡是围成一个图形的所有边长的总和就是这个图形的周长。”概念的揭示,学生是否能真正理解呢?为了检查学生理解“周长”含义的情况,我巧设了一道反馈练习:指出三角形、平行四边形、长方形和正方形这四个图形的周长其实是指什么?我让学生直接在投影上指出四种图形的边长,并按自己的话表达出求这些图形的周长其实是求什么?(求形的周长就是求它条的总和。)通过强化训练,把抽象的“周长”概念具体化、形象化,让学生加深对“周长”的理解。我深知:只要学生理解好“周长”的含义,求正方形、长方形,乃至其它图形的周长,就不言而喻了。因此,我在“周长”这个概念的理解上花大力气,是为后面的教学作好铺垫。
第三层:潜移默化,推导方法
有了上一层的前提教学,在这一层,我就可以放手让学生尝试解答例5了:用铁丝围成一个正方形,使每边长2厘米。它的周长是多少厘米?因为随着教学改期的步伐,提高学生的自学能力已迫在眉睫,那么,怎样才能正确地引导学生有的放矢地自学,让学生在自学时学有所依,学有所得呢?我是这样设计自学提纲的:电脑先显示了铁丝围成正方形后各边的情况,然后让学生根据事先设计的提纲(想:用铁丝围成的是形,已知它的是35毫米,求它的。其实就是求它的条的总和,可列式为。)设计这个自学提纲,不但让学生自学有方向,而且能培养学生逐步分析问题的好习惯,更让学生明确已知正方形的边长,才能求出它的周长的道理。检查列式情况有几种:2+2+2+2=8(厘米)、24=8(厘米)或42=8(厘米),我先给予学生肯定,然后不作小结就又放一道题让学生解答:一个正方形的边长是35厘米,它的周长是多少厘米?同样,先让学生填好思维过程,再列式。设计这道题的目的是与上题列出的式子作对比。检查式子,发现绝大多数的学生都列成354或435,而极少学生列成35+35+35+35,为什么?我跟踪追击地问学生。学生都冲口而说:“简便些”,“噢,那么,你们可以得到求正方形周长的方法吗?于是,我继续引导学生,让他们继续想:要求正方形的周长,先要知道它们的,然后可以用正方形的+++或,就可以求出它的周长,而用法比较简便。
其实这些“想”的过程正是教师要教的过程,也是学生解题的的思考过程。这些自学提纲充当了学生自学的“领路人”,学生通过提示,再思考该填上的内容,新知识便顺利地掌握了。
㈢巩固反馈,灵活运用