《对数函数数学教案【优秀9篇】》
这次为您整理了对数函数数学教案【优秀9篇】,希望能够帮助到大家。
高中数学对数函数教案 篇1
教学目标
1. 在指数函数及反函数概念的基础上,使学生掌握对数函数的概念,能正确描绘对数函数的图像,掌握对数函数的性质,并初步应用性质解决简单问题.
2. 通过对数函数的学习,树立相互联系,相互转化的观点,渗透数形结合,分类讨论的思想.
3. 通过对数函数有关性质的研究,培养学生观察,分析,归纳的思维能力,调动学生学习的积极性.
教学重点,难点
重点是理解对数函数的定义,掌握图像和性质.
难点是由对数函数与指数函数互为反函数的关系,利用指数函数图像和性质得到对数函数的图像和性质.
启发研讨式
教学用具
投影仪
教学过程
一。 引入新课
今天我们一起再来研究一种常见函数.前面的几种函数都是以形式定义的方式给出的,今天我们将从反函数的角度介绍新的函数.
反函数的实质是研究两个函数的关系,所以自然我们应从大家熟悉的函数出发,再研究其反函数.这个熟悉的函数就是指数函数.
提问:什么是指数函数?指数函数存在反函数吗?
由学生说出 是指数函数,它是存在反函数的.并由一个学生口答求反函数的过程:
由 得 .又 的'值域为 ,
所求反函数为 .
那么我们今天就是研究指数函数的反函数-----对数函数.
对数函数数学教案 篇2
一、内容与解析
(一)内容:对数函数的性质
(二)解析:本节课要学的内容是对数函数的性质及简单应用,其核心(或关键)是对数函数的性质,理解它关键就是要利用对数函数的图象。学生已经掌握了对数函数的图象特点,本节课的内容就是在此基础上的发展。由于它是构造复杂函数的基本元素之一,所以对数函数的性质是本单元的重要内容之一。的重点是掌握对数函数的性质,解决重点的关键是利用对数函数的图象,通过数形结合的思想进行归纳总结。
二、目标及解析
(一)教学目标:
1.掌握对数函数的性质并能简单应用
(二)解析:
(1)就是指根据对数函数的两类图象总结并理解对数函数的定义域、值域、单调性、奇偶性、函数值的分布特征等性质,并能将这些性质应用到简单的问题中。
三、问题诊断分析
在本节课的教学中,学生可能遇到的问题是底数a对对数函数图象和性质的影响,产生这一问题的原因是学生对参量认识不到位,往往将参量等同于自变量。要解决这一问题,就是要将参量的取值多元化,最好应用几何画板的快捷性处理这类问题,其中关键是应用好几何画板。
四、教学支持条件分析
在本节课的教学中,准备使用(),因为使用(),有利于().
五、教学过程
问题1.先画出下列函数的简图,再根据图象归纳总结对数函数 的相关性质。
设计意图:
师生活动(小问题):
1.这些对数函数的解析式有什么共同特征?
2.通过这些函数的图象请从值域、单调性、奇偶性方面进行总结函数的性质。
3.通过这些函数图象请从函数值的分布角度总结相关性质
4.通过这些函数图象请总结:当自变量取一个值时,函数值随底数有什么样的变化规律?
问题2.先画出下列函数的简图,根据图象归纳总结对数函数 的相关性质。
问题3.根据问题1、2填写下表
图象特征函数性质
a>10<a<1a>10<a<1
向y轴正负方向无限延伸函数的值域为R+
图象关于原点和y轴不对称非奇非偶函数
函数图象都在y轴右侧函数的定义域为R
函数图象都过定点(1,0)
自左向右,图象逐渐上升自左向右,图象逐渐下降增函数减函数
在第一象限内的图象纵坐标都大于0,横坐标大于1在第一象限内的图象纵坐标都大于0,横标大于0小于1
在第四象限内的图象纵坐标都小于0,横标大于0小于1在第四象限内的图象纵坐标都小于0,横标大于1
[设计意图]发现性质、弄清性质的来龙去脉,是为了更好揭示对数函数的本质属性,传统教学往往让学生在解题中领悟。为了扭转这种方式,我先引导学生回顾指数函数的性质,再利用类比的思想,小组合作的形式通过图象主动探索出对数函数的性质。教学实践表明:当学生对对数函数的图象已有感性认识后,得到这些性质必然水到渠成
例1.比较下列各组数中两个值的大小:
(1) log 23.4 , log 28.5 (2)log 0.31.8 , log 0.32.7
(3)log a5.1 , log a5.9 ( a>0 , 且a≠1 )
变式训练:1. 比较下列各题中两个值的大小:
⑴ log106 log108 ⑵ log0.56 log0.54
⑶ log0.10.5 log0.10. 6 ⑷ log1.50.6 log1.50.4
2.已知下列不等式,比较正数m,n 的大小:
(1) log 3 m 》 log 3 n (2) log 0.3 m 》 log 0.3 n
(3) log a m 》 loga n (0 log a n (a》1)
例2.(1)若 且 ,求 的取值范围
(2)已知 ,求 的取值范围;
六、目标检测
1.比较 __和__ 的大小:
2.求下列各式中的x的值
(1)
演绎推理导学案
2.1.2 演绎推理
学习目标
1.结合已学过的数学实例和生活中的实例,体会演绎推理的重要性;
2.掌握演绎推理的基本方法,并能运用它们进行一些简单的推理。
学习过程
一、前准备
复习1:归纳推理是由 到 的推理。
类比推理是由 到 的推理。
复习2:合情推理的结论 .
二、新导学
※ 学习探究
探究任务一:演绎推理的概念
问题:观察下列例子有什么特点?
(1)所有的金属都能够导电,铜是金属,所以 ;
(2)一切奇数都不能被2整除,是奇数,所以 ;
(3)三角函数都是周期函数, 是三角函数,所以 ;
(4)两条直线平行,同旁内角互补。如果A与B是两条平行直线的同旁内角,那么 .
新知:演绎推理是
的推理。简言之,演绎推理是由 到 的推理。
探究任务二:观察上述例子,它们都由几部分组成,各部分有什么特点?
所有的金属都导电 铜是金属 铜能导电
已知的一般原理 特殊情况 根据原理,对特殊情况做出的判断
大前提 小前提 结论
新知:“三段论”是演绎推理的一般模式:
大前提—— ;
小前提—— ;
结论—— .
新知:用集合知识说明“三段论”:
大前提:
小前提:
结 论:
试试:请把探究任务一中的演绎推理(2)至(4)写成“三段论”的形式。
※ 典型例题
例1 命题:等腰三角形的两底角相等
已知:
求证:
证明:
把上面推理写成三段论形式:
变式:已知空间四边形ABCD中,点E,F分别是AB,AD的中点, 求证:EF平面BCD
例2求证:当a》1时,有
动手试试:1证明函数 的值恒为正数。
2 下面的推理形式正确吗?推理的结论正确吗?为什么?
所有边长相等的凸多边形是正多边形,(大前提)
菱形是所有边长都相等的凸多边形, (小前提)
菱形是正多边形。 (结 论)
小结:在演绎推理中,只要前提和推理形式是正确的,结论必定正确。
三、总结提升
※ 学习小结
1. 合情推理 ;结论不一定正确。
2. 演绎推理:由一般到特殊。前提和推理形式正确结论一定正确。
3应用“三段论”解决问题时,首先应该明确什么是大前提和小前提,但为了叙述简洁,如果大前提是显然的,则可以省略。
※ 当堂检测(时量:5分钟 满分:10分)计分:
1. 因为指数函数 是增函数, 是指数函数,则 是增函数。这个结论是错误的,这是因为
A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误
2. 有这样一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数”
结论显然是错误的,是因为
A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误
3. 有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线平面 ,直线平面 ,直线 ∥平面 ,则直线 ∥直线 ”的结论显然是错误的,这是因为
A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误
4.归纳推理是由 到 的推理;
类比推理是由 到 的推理;
演绎推理是由 到 的推理。
后作业
1. 运用完全归纳推理证明:函数 的值恒为正数。
直观图
总 课 题空间几何体总课时第4课时
分 课 题直观图画法分课时第4课时
目标掌握斜二侧画法的画图规则.会用斜二侧画法画出立体图形的直观图.
重点难点用斜二侧画法画图.
引入新课
1.平行投影、中心投影、斜投影、正投影的有关概念.
2.空间图形的直观图的画法——斜二侧画法:
规则:
(1)____________________________________________________________.
(2)____________________________________________________________.
(3)____________________________________________________________.
(4)____________________________________________________________.
例题剖析
例1 画水平放置的正三角形的直观图.
例2 画棱长为 的'正方体的直观图.
巩固练习
1.在下列图形中,采用中心投影(透视)画法的是__________.
2.用斜二测画法画出下列水平放置的图形的直观图.
3.根据下面的三视图,画出相应的空间图形的直观图.
课堂小结
通过例题弄清空间图形的直观图的斜二侧画法方法及步骤。
指数函数、对数函数、幂函数教案 篇3
一、指数函数
1.形如yax(a0,a0)的函数叫做指数函数,其中自变量是x,函数定义域是R,值域是(0,).
2、指数函数yax(a0,a0)恒经过点(0,1). 3.当a1时,函数yax单调性为在R上时增函数; 当0a1时,函数yax单调性是在R上是减函数.
二、对数函数 1. 对数定义:
一般地,如果a(a0且a1)的b次幂等于N, 即abN,那么就称b是以a为底N的对数,记作 logaNb,其中,a叫做对数的底数,N叫做真数。
b 着重理解对数式与指数式之间的相互转化关系,理解,aN与blogaN所表示的是a,b,N三个量之间的同一个关系。 2. 对数的性质:
(1)零和负数没有对数;(2)loga10;(3)logaa1
这三条性质是后面学习对数函数的基础和准备,必须熟练掌握和真正理解。 3. 两种特殊的对数是:①常用对数:以10作底 log10N简记为lgN ②自然对数:以e作底(为无理数),e= 2.718 28…… , loge4.对数恒等式(1)logaabb;(2)alogaNN简记为lnN.
N
b 要明确a,b,N在对数式与指数式中各自的含义,在指数式aN中,a是底数,b是指数,N是幂;在对数式blogaN中,a是对数的底数,N是真数,b是以a为底N的对数,虽然a,b,N在对数式与指数式中的名称不同,但对数式与指数式有密切的联系:求b对数logaN就是求aN中的指数,也就是确定a的多少次幂等于N。
三、幂函数
1.幂函数的概念:一般地,我们把形如yx的函数称为幂函数,其中x是自变量,是常数;
注意:幂函数与指数函数的区别. 2.幂函数的性质:
(1)幂函数的图象都过点(1,1);
(2)当0时,幂函数在[0,)上单调递增;当0时,幂函数在(0,)上 单调递减;
(3)当2,2时,幂函数是 偶函数 ;当1,1,3,时,幂函数是 奇函数 .
四、精典范例 例
1、已知f(x)=x·(
31311); x221(1)判断函数的奇偶性; (2)证明:f(x)>0. 【解】:(1)因为2-1≠0,即2≠1,所以x≠0,即函数f(x)的定义域为{x∈R|x≠0} 。 x
x11x32x1)=·x又f(x)=x(x,
2212123(x)32x1x32x1··f(-x)==f(x), 22x122x1所以函数f(x)是偶函数。
x32x10. (2)当x>0时,则x>0,2>1,2-1>0,所以f(x)=·x2213
x
x又f(x)=f(-x),当x0. 综上述f(x)>0. a·2xa2(xR),若f(x)满足f(-x)=-f(x)。 例
2、已知f(x)=x21(1)求实数a的值;(2)判断函数的单调性。
【解】:(1)函数f(x)的定义域为R,又f(x)满足f(-x)= -f(x), 所以f(-0)= -f(0),即f(0)=0.所以
2a20,解得a=1, 22(2x12x2)2x112x21(2)设x1 3、已知f(x)=log2(x+1),当点(x,y)在函数y=f(x)的图象上运动时,点(,)在函数y=g(x)的图象上运动。 (1)写出y=g(x)的解析式; (2)求出使g(x)>f(x)的x的取值范围; (3)在(2)的范围内,求y=g(x) -f(x)的最大值。 【解】:(1)令 xy32xys,t,则x=2s,y=2t. 32因为点(x,y)在函数y=f(x)的图象上运动,所以2t=log2(3s+1), 11log2(3s+1),所以g(x)= log2(3s+1) 221(2)因为g(x)>f(x)所以log2(3x+1)>log2(x+1) 2即t=3x1(x1)23即0x1 (3)最大值是log23- 2x10x2. 例 4、已知函数f(x)满足f(x-3)=lg2x62(1)求f(x)的表达式及其定义域; (2)判断函数f(x)的奇偶性; (3)当函数g(x)满足关系f[g(x)]=lg(x+1)时,求g(3)的值。 解:(1)设x-3=t,则x=t+3, 所以f(t)=lg2 2 t3t3lg t36t3x3x30,得x3. 解不等式x3x3x3所以f(x)-lg,定义域为(-∞,-3)∪(3,+∞)。 x3所以f(x)=lg x3x3x3lglg=-f(x)。 x3x3x3x3(3)因为f[g(x)]=lg(x+1),f(x)=lg, x3(2)f(-x)=lg所以lgg(x)3g(x)3lg(x1), 所以g(x)3g(x)3x1, (g(x)3g(x)30,x10)。 解得g(x)=3(x2)x, 所以g(3)=5 指数对数函数练习题 一、选择题(12*5分) 1.( )4( )4等于( ) (A)a16 (B)a8 (C)a4 (D)a2 2.函数f(x)=(a2-1)x在R上是减函数,则a的取值范围是( ) (A) (B) (C)a (D)1 3.下列函数式中,满足f(x+1)= f(x)的是( ) (A) (x+1) (B)x+ (C)2x (D)2-x 4.已知ab,ab 下列不等式(1)a2b2,(2)2a2b,(3) ,(4)a b ,(5)( )a( )b 中恒成立的有( ) (A)1个 (B)2个 (C)3个 (D)4个 5.函数y= 的值域是( ) (A)(- ) (B)(- 0) (0,+ ) (C)(-1,+ ) (D)(- ,-1) (0,+ ) 6.下列函数中,值域为R+的是( ) (A)y=5 (B)y=( )1-x (C)y= (D)y= 7.下列关系中正确的是( ) (A)( ) ( ) ( ) (B)( ) ( ) ( ) (C)( ) ( ) ( ) (D)( ) ( ) ( ) 8.若函数y=32x-1的反函数的图像经过P点,则P点坐标是( ) (A)(2,5) (B)(1,3) (C)(5,2) (D)(3,1) 9.函数f(x)=3x+5,则f-1(x)的定义域是( ) (A)(0,+ ) (B)(5,+ ) (C)(6,+ ) (D)(- ,+ ) 10.已知函数f(x)=ax+k,它的。图像经过点(1,7),又知其反函数的图像经过点(4,0),则函数f(x)的表达式是( ) (A)f(x)=2x+5 (B)f(x)=5x+3 (C)f(x)=3x+4 (D)f(x)=4x+3 11.已知01,b-1,则函数y=ax+b的图像必定不经过( ) (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限 12.一批设备价值a万元,由于使用磨损,每年比上一年价值降低b%,则n年后这批设备的价值为( ) (A)na(1-b%) (B)a(1-nb%) (C)a[(1-(b%))n (D)a(1-b%)n 答题卡 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 二、填空题(4*4分) 13.若a a ,则a的取值范围是 。 14.若10x=3,10y=4,则10x-y= 。 15.化简= 。 16.函数y=3 的单调递减区间是 。 三、解答题 17.(1)计算: (2)化简: 18.(12分)若 ,求 的值。 19.(12分)设01,解关于x的不等式a a . 20.(12分)已知x [-3,2],求f(x)= 的最小值与最大值。 21.(12分)已知函数y=( ) ,求其单调区间及值域。 22.(14分)若函数 的值域为 ,试确定 的取值范围。 参考答案 一、 选择题 题号 1 2 3 4 5 6 7 8 9 10 答案 A C D D D B C A D B 题号 11 12 13 14 15 16 17 18 19 20 答案 C D C B A D A A A D 二、填空题 1.01 2. 3.1 4.(- ,0) (0,1) (1,+ ) ,联立解得x 0,且x 1。 5.[( )9,39] 令U=-2x2-8x+1=-2(x+2)2+9,∵ -3 ,又∵y=( )U为减函数,( )9 y 39。 6。D、C、B、A。 7.(0,+ ) 令y=3U,U=2-3x2, ∵y=3U为增函数,y=3 的单调递减区间为[0,+ )。 8.0 f(125)=f(53)=f(522-1)=2-2=0。 9. 或3。 Y=m2x+2mx-1=(mx+1)2-2, ∵它在区间[-1,1]上的最大值是14,(m-1+1)2-2=14或(m+1)2-2=14,解得m= 或3。 10.2 11.∵ g(x)是一次函数,可设g(x)=kx+b(k 0), ∵F(x)=f[g(x)]=2kx+b。由已知有F(2)= ,F( )=2, , k=- ,b= ,f(x)=2- 三、解答题 1.∵02, y=ax在(- ,+ )上为减函数,∵ a a , 2x2-3x+1x2+2x-5,解得23, 2.g[g(x)]=4 =4 =2 ,f[g(x)]=4 =2 ,∵g[g(x)]g[f(x)]f[g(x)], 2 2 ,22x+122x, 2x+12x,解得01 3.f(x)= , ∵x [-3,2],.则当2-x= ,即x=1时,f(x)有最小值 ;当2-x=8,即x=-3时,f(x)有最大值57。 4.要使f(x)为奇函数,∵ x R,需f(x)+f(-x)=0, f(x)=a- =a- ,由a- =0,得2a- =0,得2a- 。 5.令y=( )U,U=x2+2x+5,则y是关于U的减函数,而U是(- ,-1)上的减函数,[-1,+ ]上的增函数, y=( ) 在(- ,-1)上是增函数,而在[-1,+ ]上是减函数,又∵U=x2+2x+5=(x+1)2+4 4, y=( ) 的值域为(0,( )4)]。 6.Y=4x-3 ,依题意有 即 , 2 由函数y=2x的单调性可得x 。 7.(2x)2+a(2x)+a+1=0有实根,∵ 2x0,相当于t2+at+a+1=0有正根, 则 8.(1)∵定义域为x ,且f(-x)= 是奇函数; (2)f(x)= 即f(x)的值域为(-1,1); (3)设x1,x2 ,且x1x2,f(x1)-f(x2)= (∵分母大于零,且a a ) f(x)是R上的增函数。 对数函数及其性质教学设计 1.教学方法 建构主义学习观,强调以学生为中心,学生在教师指导下对知识的主动建构。它既强调学习者的认知主体作用,又不忽视教师的指导作用。 高中一年级的学生正值身心发展的过渡时期,思维活跃,具有一定的独立性,喜欢新鲜事物,敢于大胆发表自己的见解,不过思维还不是很成熟。 在目标分析的基础上,根据建构主义学习观,及学生的认知特点,我拟采用“探究式”教学方法。将一节课的核心内容通过四个活动的形式引导学生对知识进行主动建构。其理论依据为建构主义学习理论。它很好地体现了“学生为主体,教师为主导,问题为主线,思维为主攻”的“四为主”的教学思想。 2.学法指导 新课程强调“以学生发展为核心”,强调培养学生的自主探索能力与合作学习能力。因此本节课学生将在教师的启发诱导下对教师提供的素材经历创设情境→获得新知→作图察质→问题探究→归纳性质→学以致用→趁热打铁→画龙点睛→自我提升的过程,这一过程将激发学生积极参与到教学活动中来。 3.教学手段 本节课我选择计算机辅助教学。增大课堂容量,提高课堂效率;激发学生的学习兴趣,展示运动变化过程,使信息技术真正为教学服务. 4.教学流程 四、教学过程 教学过程 设计意图 一、创设情境,导入新课 活动1:(1)同学们有没有看过《冰河世纪》这个电影?先播放视频,引入课题。 (2)考古学家经过长期实践,发现冻土层内某微量元素的含量P与年份t的关系:,这是一个指数式,由指数与对数的关系,此指数式可改写为对数式。 (3)考古学家提取了冻土层内微量元素,确定它的残余量约占原始含量的1%,即P=0.01,代入对数式,可知 (4)由表格中的数据: 碳14的含量P 0.5 0.3 0.1 0.01 0.001 生物死亡年数t 5730 9953 19035 39069 57104 可读出精确年份为39069,当P值为0.001时,t大约为571,所以每一个P值都与一个t值相对应,是一一对应关系,所以p与t之间是函数关系。 (5)数学知识不但可以解决猛犸象的封存时间,也可以与其他学科的`知识相结合来解决视频中的遗留问题,就是不知道咱们中国的猛犸象克隆问题会由班里的哪位同学解决,我们拭目以待。 (6)把函数模型一般化,可给出对数函数的概念。 通过这个实例激发学生学习的兴趣,使学生认识到数学来源于实践,并为实践服务。 和学生一起分析处理问题,体会函数关系,并体现学生的主体地位。 二、形成概念、获得新知 定义:一般地,我们把函数 叫做对数函数。其中x是自变量,定义域为 例1求下列函数的定义域: (1);(2). 解:(1)函数的定义域是。 (2)函数的定义域是。 归纳:形如的的函数的定义域要考虑— 三、探究归纳、总结性质 活动1:小组合作,每个组内分别利用描点法画和的图象,组长合理分工,看哪个小组完成的最好。 选取完成最好、最快的小组,由组长在班内展示。 活动2:小组讨论,对任意的a值,对数函数图象怎么画? 教师带领学生一起举手,共同画图。 活动3:对a>1时,观察图象,你能发现图象有哪些图形特征吗? 然后由学生讨论完成下表左边: 函数的图象特征 函数的性质 图象都位于y轴的右方 定义域是 图象向上向下无限延展 值域是R 图象都经过点(1,0) 当x=1时,总有y=0 当a》1时,图象逐渐上升; 当0当a》1时,是增函数 当0通过对定义的进一步理解,培养学生思维的严密性和批判性。 通过作出具体函数图象,让学生体会由特殊到一般的研究方法。 学生可类比指数函数的研究过程,独立研究对数函数性质,从而培养学生探究归纳、分析问题、解决问题的能力。 师生一起完成表格右边,对0<a<1时,找两位同学一问一答共同完成,再次体现数形结合。 四、探究延伸 (1)探讨对数函数中的符号规律。 (2)探究底数分别为与的对数函数图像的关系。 (3)在第一象限中,探究底数分别为的对数函数图象与底数a的关系。 五、分析例题、巩固新知 例2比较下列各组数中两个值的大小: (1),; (2),; (3),。 解: (1)在上是增函数, 且3.4》8.5, (2)在上是减函数, 且3.4》8.5,. (3)注:底数非常数,要分类讨论的范围。 当a》1时,在上是增函数, 且3.4》8.5,; 当0且3.4》8.5, 练习1:比较下列两个数的大小: 练习2:比较下列两个数的大小: (找学生上黑板讲解练习2的第一题,强调多种做法,一起完成第二小题。) 考察学生对对数函数图像的理解与掌握,进一步强调数形结合。 通过运用对数函数的单调性“比较两数的大小”培养学生运用函数的观点解决问题,逐步向学生渗透函数的思想,分类讨论的思想,提高学生的发散思维能力。 六、对比总结、深化认识 先总结本节课所学内容,由学生总结,教师补充,强调哪些是重要内容 (1)对数函数的定义; (2)对数函数的图象与性质; (3)对数函数的三个结论; (4)对数函数的图象与性质的应用。 七、课后作业、巩固提高 (1)理解对数函数的图象与性质; (2)课本74页,习题2.2中7,8; (3)上网搜集一些运用对数函数解决的实际问题,根据今天学习的知识予以解答。 八、评价分析 坚持过程性评价和阶段性评价相结合的原则。坚持激励与批评相结合的原则。 教学过程中,评价学生的情绪、状态、积极性、自信心、合作交流的意识与独立思考的能力; 在学习互动中,评价学生思维发展的水平; 在解决问题练习和作业中,评价学生基础知识基本技能的掌握。 适时地组织和指导学生归纳知识和技能的一般规律,有助于学生更好地学习、记忆和应用,发挥知识系统的整体优势,并为后续学习打好基础。 课后作业的设计意图: 一、巩固学生本节课所学的知识并落实教学目标;二、让不同基础的学生学到不同的技能,体现因材施教的原则; 三、使同学们体会到科学的探索永无止境,为数学的学习营造一种良好的科学氛围。 《对数函数及其性质》是人教版数学必修一的内容。有人说“课堂教学是学术研究的'实践活动,既像科学家进入科学实验室,又像艺术家登上艺术表演的舞台,教学是一种创造的艺术,一种遗憾的艺术。”回顾这节课有成功之处,也有遗憾之处。 成功之处: 1、通过盲生摸读理解函数图象,让学生更直观地归纳出对数函数的性质,对突破本节课的重、难点起了很大的帮助。 2、在引入新课时,根据我校学生的实际情况我重新设计了教学情境,从“细胞分裂”问题导入新课。由于问题具有开放性,又简单易行,学生表现得都很积极,课堂开始让学生动起来了。这样引入新课就自然了许多,学生接受起来也容易些。一堂成功的数学课,往往给人以自然、和谐、舒服的享受。所以设计恰当的情境引入新课是很重要的。 3、通过选取不同的底数a的对数图象,让学生类比研究指数函数图象及其性质分组探究对数函数的图象和性质。这个环节让学生合作学习,合作学习让学生感受到学习过程中的互助,还能让学生自己建构知识体系。不同数学内容之间的联系和类比,有助于学生了解与中学数学知识有关的扩展知识及内在的数学思想,促使学生认真思考其中的一些问题,加深对其理解。 遗憾之处: 1、在分组讨论如何画对数函数图象时,由于担心教学任务不能准确完成,我就直接找几位学生说出特殊点的坐标来列表,然后“描点、连线”一句话带过,整个过程太过精简,没有让学生真正的参与进来,对调动学生的积极性也没有起到好的作用,让学生失去一个展示自己成果的机会。 2、在讲完例题紧接着给出的练习题难易不当,这样学生做起来就有点吃力了,甚至有些学生觉得不知道该怎么做了,最后两道稍难的练习题应该留到下节课解决会更好些。 3、课堂小结只是带领学生复习了本节课所学的重点内容。如果能结合练习题提出问题,让学生思考解决这些问题的同时也为下节课的教学做准备,这样更有助于学生知识的扩展和延伸。 教育无止境,教育事业应该是一个常做常新的事业。为师无止境,教书生涯应该是一个不断常新不断前行的充满新奇的旅途。反思将让教师的生命变得五彩缤纷,反思将让我们的教育变成一支抑扬顿挫的交响乐。 案例背景 对数函数是函数中又一类重要的基本初等函数,它是在学生已经学过对数与常用对数,反函数以及指数函数的基础上引入的.故是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解.对数函数的概念,图象与性质的学习使学生的知识体系更加完整,系统,同时又是对数和函数知识的拓展与延伸.它是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的基础. 案例叙述: (一).创设情境 (师):前面的几种函数都是以形式定义的方式给出的,今天我们将从反函数的角度介绍新的函数. 反函数的实质是研究两个函数的关系,所以自然我们应从大家熟悉的函数出发,再研究其反函数.这个熟悉的函数就是指数函数. (提问):什么是指数函数?指数函数存在反函数吗? (学生): 是指数函数,它是存在反函数的. (师):求反函数的步骤 (由一个学生口答求反函数的过程): 由 得 .又 的值域为 , 所求反函数为 . (师):那么我们今天就是研究指数函数的反函数-----对数函数. (二)新课 1.(板书) 定义:函数 的反函数 叫做对数函数. (师):由于定义就是从反函数角度给出的。,所以下面我们的研究就从这个角度出发.如从定义中你能了解对数函数的什么性质吗?最初步的认识是什么? (教师提示学生从反函数的三定与三反去认识,学生自主探究,合作交流) (学生)对数函数的定义域为 ,对数函数的值域为 ,且底数 就是指数函数中的 ,故有着相同的限制条件 . (在此基础上,我们将一起来研究对数函数的图像与性质.) 一。 引入新课 一。 对数函数的概念 1. 定义:函数 的反函数 叫做对数函数。 由于定义就是从反函数角度给出的,所以下面我们的研究就从这个角度出发。如从定义中你能了解对数函数的什么性质吗?最初步的认识是什么? 教师可提示学生从反函数的三定与三反去认识,从而找出对数函数的定义域为 ,对数函数的值域为 ,且底数 就是指数函数中的 ,故有着相同的限制条件 . 在此基础上,我们将一起来研究对数函数的图像与性质。 二。对数函数的图像与性质 (板书) 1. 作图方法 提问学生打算用什么方法来画函数图像?学生应能想到利用互为反函数的两个函数图像之间的关系,利用图像变换法画图。同时教师也应指出用列表描点法也是可以的,让学生从中选出一种,最终确定用图像变换法画图。 由于指数函数的图像按 和 分成两种不同的类型,故对数函数的图像也应以1为分界线分成两种情况 和 ,并分别以 和 为例画图。 具体操作时,要求学生做到: (1) 指数函数 和 的图像要尽量准确(关键点的位置,图像的变化趋势等). (2) 画出直线 . (3) 的图像在翻折时先将特殊点 对称点 找到,变化趋势由靠近轴对称为逐渐靠近轴,而 的图像在翻折时可提示学生分两段翻折,在左侧的先翻,然后再翻在 右侧的部分。 学生在笔记本完成具体操作,教师在学生完成后将关键步骤在黑板上演示一遍,画出 和 的图像。(此时同底的指数函数和对数函数画在同一坐标系内)如图: 2. 草图。 教师画完图后再利用投影仪将 和 的图像画在同一坐标系内,如图: 然后提出让学生根据图像说出对数函数的性质(要求从几何与代数两个角度说明) 3. 性质 (1) 定义域: (2) 值域: 由以上两条可说明图像位于 轴的右侧。 (3) 截距:令 得 ,即在 轴上的截距为1,与 轴无交点即以 轴为渐近线。 (4) 奇偶性:既不是奇函数也不是偶函数,即它不关于原点对称,也不关于 轴对称。 (5) 单调性:与 有关。当 时,在 上是增函数。即图像是上升的 当 时,在 上是减函数,即图像是下降的。 之后可以追问学生有没有最大值和最小值,当得到否定答案时,可以再问能否看待何时函数值为正?学生看着图可以答出应有两种情况: 学生回答后教师可指导学生巧记这个结论的方法:当底数与真数在1的同侧时函数值为正,当底数与真数在1的两侧时,函数值为负,并把它当作第(6)条性质板书记下来。 最后教师在总结时,强调记住性质的关键在于要脑中有图。且应将其性质与指数函数的性质对比记忆。(特别强调它们单调性的一致性) 对图像和性质有了一定的了解后,一起来看看它们的应用。 教学目标: ①掌握对数函数的性质。 ②应用对数函数的性质可以解决:对数的大小比较,求复合函数的定义域、值 域及单调性。 ③ 注重函数思想、等价转化、分类讨论等思想的渗透,提高解题能力。 教学重点与难点: 对数函数的性质的应用。 教学过程设计: ⒈复习提问:对数函数的概念及性质。 ⒉开始正课 1 比较数的大小 例 1 比较下列各组数的。大小。 ⑴loga5.1 ,loga5.9 (a》0,a≠1) ⑵log0.50.6 ,logл0.5 ,lnл 师:请同学们观察一下⑴中这两个对数有何特征? 生:这两个对数底相等。 师:那么对于两个底相等的对数如何比大小? 生:可构造一个以a为底的对数函数,用对数函数的单调性比大小。 师:对,请叙述一下这道题的解题过程。 生:对数函数的单调性取决于底的大小:当0》a》1时,函数y=logax单》 p=“”》 调递减,所以loga5.1》loga5.9 ;当a》1时,函数y=logax单调递 增,所以loga5.1》loga5.9。》 p=“”》 板书: 解:ⅰ)当0》a》1时,函数y=logax在(0,+∞)上是减函数,》 p=“”》 ∵5.1》5.9 loga5.1=“”》loga5.9 ⅱ)当a》1时,函数y=logax在(0,+∞)上是增函数, ∵5.1》5.9 ∴loga5.1》loga5.9》 p=“”》 师:请同学们观察一下⑵中这三个对数有何特征? 生:这三个对数底、真数都不相等。 师:那么对于这三个对数如何比大小? 生:找“中间量”, log0.50.6》0,lnл》0,logл0.5》0;lnл》1, log0.50.6》1,所以logл0.5》 log0.50.6》 lnл。 板书:略。 师:比较对数值的大小常用方法:①构造对数函数,直接利用对数函 数 的单调性比大小,②借用“中间量”间接比大小,③利用对数 函数图象的位置关系来比大小。 2 函数的定义域, 值 域及单调性。 例 2 ⑴求函数y=的定义域。 ⑵解不等式log0.2(x2+2x-3)》log0.2(3x+3) 师:如何来求⑴中函数的定义域?(提示:求函数的定义域,就是要 使函数有意义。若函数中含有分母,分母不为零;有偶次根式, 被开方式大于或等于零;若函数中有对数的形式,则真数大于 零,如果函数中同时出现以上几种情况,就要全部考虑进去,求 它们共同作用的结果。) 生:分母2x-1≠0且偶次根式的被开方式log0.8x-1≥0,且真数x》0。 板书: 解:∵ 2x-1≠0 x≠0.5 log0.8x-1≥0 , x≤0.8 x》0 x》0 ∴x(0,0.5)∪(0.5,0.8〕 师:接下来我们一起来解这个不等式。 分析:要解这个不等式,首先要使这个不等式有意义,即真数大于零, 再根据对数函数的单调性求解。 师:请你写一下这道题的解题过程。 生:》板书》 解: x2+2x-3》0 x》-3 x=“”》1 (3x+3)》0 , x》-1 x2+2x-3》(3x+3) -2》x》3》 p=“”》 不等式的解为:1》x》3》 p=“”》 例 3 求下列函数的值域和单调区间。 ⑴y=log0.5(x- x2) ⑵y=loga(x2+2x-3)(a》0,a≠1) 师:求例3中函数的的值域和单调区间要用及复合函数的思想方法。 下面请同学们来解⑴。 生:此函数可看作是由y= log0.5u, u= x- x2复合而成。《对数函数的图像与性质》教案 篇4
对数函数数学教案 篇5
对数函数练习题 篇6
数学教案-对数函数 篇7
高中数学对数函数教案 篇8
对数函数数学教案 篇9