首页 > 教学教案 > 教案大全 > 教学设计 > 指数函数教学设计精选10篇正文

《指数函数教学设计精选10篇》

时间:

作为一名优秀的教育工作者,时常要开展教案准备工作,教案有助于顺利而有效地开展教学活动。写教案需要注意哪些格式呢?

高一数学《指数函数》优秀教案 1

我本节课说课的内容是高中数学第一册第二章第六节“指数函数”的第一课时——指数函数的定义,图像及性质。我将尝试运用新课标的理念指导本节课的教学。新课标指出,学生是教学的主体,教师的教要应本着从学生的认知规律出发,以学生活动为主线,在原有知识的基础上,建构新的知识体系。我将

一、教材分析

1、教材的地位和作用:函数是高中数学学习的重点和难点,函数的贯穿于整个高中数学之中。本节课是学生在已掌握了函数的一般性质和简单的指数运算的基础上,进一步研究指数函数,以及指数函数的图像与性质,同时也为今后研究对数函数以及等比数列的性质打下坚实的基础。因此,本节课的内容十分重要,它对知识起到了承上启下的作用。

2、教学的重点和难点:根据这一节课的内容特点以及学生的实际情况,我将本节课教学重点定为指数函数的图像、性质及其运用,本节课的难点是指数函数图像和性质的发现过程,及指数函数图像与底的关系。

二、教学目标分析

基于对教材的理解和分析,我制定了以下的教学目标:

1、知识目标(直接性目标):理解指数函数的定义,掌握指数函数的图像、性质及其简单应用。

2、能力目标(发展性目标):通过教学培养学生观察、分析、归纳等思维能力,体会数形结合和分类讨论,增强学生识图用图的'能力。

3、情感目标(可持续性目标):通过学习,使学生学会认识事物的特殊性与一般性之间的关系,培养学生勇于提问,善于探索的思维品质。

三、教法学法分析

1、教学策略:首先从实际问题出发,激发学生的学习兴趣。第二步,学生归纳指数的图像和性质。第三步,典型例题分析,加深学生对指数函数的理解。

2、教学:贯彻引导发现式教学原则,在教学中既注重知识的直观素材和背景材料,又要激活相关知识和引导学生思考、探究、创设有趣的问题。

3、教法分析:根据教学内容和学生的状况,本节课我采用引导发现式的教学方法并充分利用多媒体辅助教学。

《指数函数》的优秀教案 2

一、教材分析

(一)教材的地位和作用

本课时主要学习指数函数的图像和性质概念,通过指数函数图像的研究归纳其性质。“指数函数”是函数中的一个重要基本初等函数,是后续知识——对数函数(指数函数的反函数)的准备知识。本节课的重点是指数函数的图像及性质,难点在于弄清楚底数a对于函数变化的影响。通过这部分知识的学习进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识并体会研究函数较为完整的思维方法,此外还可类比学习后面的其它函数。

(二)教学目标

知识维度:初中已经学习了正比例函数、反比例函数和一次函数,并对一次函数、二次函数作了更深入研究,学生已经初步掌握了研究函数的一般方法,能够从初中运动变化的角度认识函数初步转化到从集合与对应的观点来认识函数。

能力维度:学生利用描点法画出函数的图像,并描述出函数的图像特征,能够为研究指数函数的性质做好准备。

素质维度:由观察到抽象的数学活动过程已有一定的体会,已初步了解了数形结合的思想。

1、知识与技能目标:

(1)掌握指数函数的概念(能理解对a的限定以及自变量的取值可推广至实数范围);

(2)会做指数函数的图像;

(3)能初步把握指数函数的图像,性质及其简单应用。

2、过程与方法目标:

通过由指数函数的图像归纳其性质的'学习过程,由图像研究指数函数的性质。利用性质解决实际问题,培养学生探究、归纳分析问题的能力。

3、情感态度与价值观目标:

(1)在学习的过程中体会研究具体函数及其性质的过程和方法,如体验从特殊到一般的学习规律,认识事物之间的普遍联系与相互转化,培养学生用联系的观点看问题

(2)通过教学互动促进师生情感,激发学生的学习兴趣,提高学生抽象、概括、分析、综合的能力通过探究体会“数形结合”的思想;感受知识之间的关联性;体会研究函数由特殊到一般再到特殊的研究学习过程;体验研究函数的一般思维方法。

(三)教学重点和难点

教学重点:指数函数的图象和性质。

教学难点:指数函数的图象性质与底数a的关系。

教学关键:从实际出发,使学生在获得一定的感性认识和基础上,通过观察、比较、归纳提高到理性认识,以形成完整的概念;在理解概念的基础上充分结合图象,利用数形结合来扫清障碍。

课时安排:1课时

二、学情分析

学生已有一定的函数基本知识、可建立简单的函数关� 此外,初中所学有理数范围内的指数相关知识,将已有知识推广至实数范围。在此基础上进入指数函数的学习,并将所学对函数的认识进一步推向系统化。

三、教法分析

(一)教学方式

直接讲授与启发探究相结合

(二)教学手段

借助多媒体,展示学生的做图结果;演示指数函数的图像

四、教学基本思路:

(一)创设情境,揭示课题。

1创设情境(如何建立一个关于指数函数的数学模型——后续解决)

2引入指数函数概念

(二)探究新知。

1研究指数函数的图象

2归纳总结指数函数的性质

(三)巩固深化,发展思维

(四)归纳整理,提高认识

(五)巩固练习与作业

(六)教学设计说明

1、抛出生活中的实例,需要建立一个关于指数函数的数学模型,为学生提出问题;提高学生学习新知识的积极性以及体会数学与生活密切相关。

2、用简单易懂的实例引入指数函数概念,体会由特殊到一般的思想。

3、探究指数函数的性质从“数”的角度用解析式不易解决,转而由“形”——图象突破,体会数形结合的思想。通过研究几个具体的指数函数引导学生通过观察图象发现指数函数的图象规律,从而归纳指数函数的一般性质,经历一个由特殊到一般的探究过程。让学生在研究出指数函数的一般性质后进行总结归纳函数的其他性质,从而对函数进行较为系统的研究。

4、进行一些巩固练习从而能对函数进行较为基本的应用

高一数学教案:指数函数 3

教学目标

1、使学生掌握指数函数的概念,图象和性质。

(1)能根据定义判断形如什么样的函数是指数函数,了解对底数的限制条件的合理性,明确指数函数的定义域。

(2)能在基本性质的指导下,用列表描点法画出指数函数的图象,能从数形两方面认识指数函数的性质。

(3) 能利用指数函数的性质比较某些幂形数的大小,会利用指数函数的图象画出形如

的图象。

2、 通过对指数函数的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法。

3、通过对指数函数的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣。使学生善于从现实生活中数学的发现问题,解决问题。

教学建议

教材分析

(1) 指数函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究。

(2) 本节的教学重点是在理解指数函数定义的基础上掌握指数函数的图象和性质。难点是对底数

时,函数值变化情况的区分。

(3)指数函数是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从指数函数的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究。

教法建议

(1)关于指数函数的定义按照课本上说法它是一种形式定义即解析式的特征必须是

的样子,不能有一点差异,诸如

等都不是指数函数。

(2)对底数

的限制条件的理解与认识也是认识指数函数的重要内容。如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对指数函数的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来。

关于指数函数图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,

看过"高一数学指数函数教案 "的还看了:

1、高一数学集合和函数的难点

2、高一数学《函数的奇偶性》教案及练习题

《指数函数》的优秀教案 4

教材分析:

“指数函数”是在学生系统地学习了函数概念及性质,掌握了指数与指数幂的运算性质的基础上展开研究的.作为重要的基本初等函数之一,指数函数既是函数近代定义及性质的第一次应用,也为今后研究其他函数提供了方法和模式,为后续的学习奠定基础.指数函数在知识体系中起了承上启下的作用,同时在生活及生产实际中有着广泛的应用,因此它也是对学生进行情感价值观教育的好素材,所以指数函数应重点研究.

学情分析:

通过初中阶段的学习和高中对函数、指数的运算等知识的系统学习,学生对函数已经有了一定的认识,学生对用“描点法”描绘出函数图象的方法已基本掌握,已初步了解数形结合的思想.另外,学生对由特殊到一般再到特殊的数学活动过程已有一定的体会.

教学目标:

知识与技能:理解指数函数的概念和意义,能正确作出其图象,掌握指数函数的性质并能自觉、灵活地应用其性质(单调性、中介值)比较大小.

过程与方法:

(1)体会从特殊到一般再到特殊的研究问题的方法,培养学生观察、归纳、猜想、概括的能力,让学生了解数学来源于生活又在生活中有广泛的应用;理解并掌握探求函数性质的一般方法;

(2)从数和形两方面理解指数函数的性质,体会数形结合、分类讨论的数学思想方法,提高思维的灵活性,培养学生直观、严谨的思维品质.

情感、态度与价值观:

(1)体验从特殊到一般再到特殊的学习规律,认识事物之间的普遍联系与相互转化,培养学生用联系的观点看问题,激发学生自主探究的精神,在探究过程中体验合作学习的乐趣;

(2)让学生在数形结合中感悟数学的统一美、和谐美,进一步培养学生的学习兴趣。

教学重点:指数函数的'图象和性质

教学难点:指数函数概念的引入及指数函数性质的应用

教法研究:

本节课准备由实际问题引入指数函数的概念,这样可以让学生知道指数函数的概念来源于客观实际,便于学生接受并有利于培养学生用数学的意识。

利用函数图象来研究函数性质是函数中的一个非常重要的思想,本节课将是利用特殊的指数函数图象归纳总结指数函数的性质,这样便于学生研究其变化规律,理解其性质并掌握一般地探求函数性质的方法同时运用现代信息技术学习、探索和解决问题,帮助学生理解新只是。

教学过程:

一、问题情境:

问题1:某种细胞分裂时,由一个分裂成2个,2个分裂成4个,4个分裂成8个,以此类推,一个这样的细胞分裂x次后,得到的细胞个数y与x的函数关系式是什么?

问题2:一种放射性物质不断变化为其它物质,每经过一年剩余质量约是原来的,设该物质的初始质量为1,经过年后的剩余质量为,你能写出之间的函数关系式吗?

分析可知,函数的关系式分别是与

问题3:在问题1和2中,两个函数的自变量都是正整数,但在实际问题中自变量不一定都是正整数,比如在问题2中,我们除了关心1年、2年、3年后该物质的剩余量外,还想知道3个月、一年半后该物质的剩余量,怎么办?

这就需要对函数的定义域进行扩充,结合指数概念的的扩充,我们也可以将函数的定义域扩充至全体实数,这样就得到了一个新的函数——指数函数.

二、数学建构:

1]定义:

一般地,函数叫做指数函数,其中.

问题4:为什么规定?

问题5:你能举出指数函数的例子吗?

阅读材料(“放射性碳法”测定古物的年代):

在动植物体内均含有微量的放射性,动植物死亡后,停止了新陈代谢,不在产生,且原有的会自动衰变。经过5740年(的半衰期),它的残余量为原来的一半。经过科学测定,若的原始含量为1,则经过x年后的残留量为=.

这种方法经常用来推算古物的年代。

练习1:判断下列函数是否为指数函数.

(1)(2)

(3)(4)

说明:指数函数的解析式y=中,的系数是1.

有些函数貌似指数函数,实际上却不是,如y=+k(a>0且a1,kZ);

有些函数看起来不像指数函数,实际上却是,如y=(a>0,且a1),因为它可以化为y=,其中>0,且1

2]通过图象探究指数函数的性质及其简单应用:利用几何画板及其他多媒体软件和学生一起完成

问题6:我们研究函数的性质,通常都研究哪些性质?一般如何去研究?

函数的定义域,值域,单调性,奇偶性等;

利用函数图象研究函数的性质

问题7:作函数图象的一般步骤是什么?

列表,描点,作图

探究活动1:用列表描点法作出,的图像(借助几何画板演示),观察、比较这两个函数的图像,我们可以得到这两个函数哪些共同的性质?请同学们仔细观察。

引导学生分析图象并总结此时指数函数的性质(底数大于1):

(1)定义域?R

(2)值域?函数的值域为

(3)过哪个定点?恒过点,即

(4)单调性?时,为上的增函数

(5)何时函数值大于1?小于1?当时;当时,

问题8::是否所有的指数函数都是这样的性质?你能找出与刚才的函数性质不一样的指数函数吗?

(引导学生自我分析和反思,培养学生的反思能力和解决问题的能力).

根据学生的发现,再总结当底数小于1时指数函数的相关性质并作比较。

问题9:到现在,你能自制一份表格,比较及两种不同情况下的图象和性质吗?

(学生完成表格的设计,教师适当引导)

指数函数教学反思 5

“指数函数”的教学共分两个课时完成。第一课时为指数函数的定义,图像及性质;第二课时为指数函数的应用。“指数函数”第一课时是在学习指数概念的基础上学习指数函数的概念和性质,通过学习指数函数的定义,图像及性质,可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,并且为学习对数函数作好准备。

在讲解指数函数的定义前,复习有关指数知识及简单运算,然后由实例引入指数函数的概念,因为手工绘图复杂且不够精确,并且是本节课的教学关键,教学中,我借助电脑手段,通过描点作图,观察图像,引导学生说出图像特征及变化规律,并从而得出指数函数的性质,提高学生的形数结合的能力。

大部分学生数学基础较差,理解能力,运算能力,思维能力等方面参差不齐;同时学生学好数学的自信心不强,学习积极性不高。针对这种情况,在教学中,我注意面向全体,发挥学生的主体性,引导学生积极地观察问题,分析问题,激发学生的求知欲和学习积极性,指导学生积极思维、主动获取知识,养成良好的学习方法。并逐步学会独立提出问题、解决问题。总之,调动学生的非智力因素来促进智力因素的发展,引导学生积极开动脑筋,思考问题和解决问题,从而发扬钻研精神、勇于探索创新。

为了调动学生学习的积极性,使学生变被动学 教学中我引导学生从实例出发启发出指数函数的定义,在概念理解上,用步步设问、课堂讨论来加深理解。在指数函数图像的画法上,我借助电脑,演示作图过程及图像变化的动画过程,从而使学生直接地接受并提高学生的学习兴趣和积极性,很好地突破难点和提高教学效率,从而增大教学的容量和直观性、准确性。总之,本堂课充分体现了“教师为主导,学生为主体”的教学原则。

指数函数教学反思 6

1.本节课改变了以往常见的函数研究方法,让学生从不同的角度去研究函数,对函数进行一个全方位的研究,不仅仅是通过对比总结得到指数函数的性质,更重要的是让学生体会到对函数的研究方法,以便能将其迁移到其他函数的研究中去,教师可以真正做到“授之以渔”而非“授之以鱼”。

2.教学中借助信息技术可以弥补传统教学在直观感、立体感和动态感方面的不足,可以很容易的化解教学难点、突破教学重点、提高课堂效率,本课使用几何画板可以动态地演示出指数函数的底数的动态过程,让学生直观观察底数对指数函数单调性的影响。

指数函数设计说课稿 7

指数函数教学反思

指数函数是学生在学习了函数基本概念和性质以后接触到得第一个具体函数,所以在这部分的教学安排上,我更注意学生思维习惯的养成,特作如下思考:

1、设计应从哪些方面,哪些角度去探索一个具体函数,我在这部分设置了三个环节。

(1)由具体的折纸的例子引出指数函数

设计意图:贴近学生的生活实际,便于动手操作与观察。让学生充分感受我们生活中大量存在指数函数模型,从而便于学生接受指数函数的形式,突破符号语言的障碍。

(2)通过研究几个特殊的底数的指数函数得到一般指数函数的规律。符合学生由特殊到一般的,由具体到抽象的学习认知规律。

(3)通过多媒体手段,用计算机作出底数a变换的图像,让学生更直观、深刻的感受指数函数的图像及性质。

通过引入定义剖析辨析运用,这个由特殊到一般的过程揭示了概念的内涵和外延;而后在教师的点拨下,学生作图观察探究交流概括运用,使学生在动手操作、动眼观察、动脑思考、合作探究中达到对知识的发现和接受,同时渗透了分类讨论、数形结合的思想,提高了学生学习数学概念、性质和方法的能力,养成了良好的学习习惯。

2、课堂练习前后呼应,各有侧重。

通过问题呈现,变式教学,不但突出了重点内容,把知识加固、挖深。使教学目标得以实现。而且注重知识的延续性,为以后的学习奠定了基础。

3、教学过程设计为六个环节:

1、情景设置,形成概念2、发现问题,深化概念。

3、深入探究图像,加深理解性质。

4、强化训练,落实掌握

5、小结归纳,拓展深化。

6、布置作业,延伸课堂。各个环节层层深入,环环相扣,充分体现了在教师的'指导下,师生、生生之间的交流互动,使学生亲身经历知识的形成和发展过程。

4、通过学案教学为抓手,让学生先学。

老师在课前充分了解了学情,以学定教,进行二次备课,抓住学生的学习困难,站在学生学的角度设计教学。

5、学生真思考,学生的真探究,才是保障教学目标得以实现的前提。

在教学中,教师通过教学设计要以给学生充分的思维空间、推理运算空间和交流学习空间,努力创设一个“活动化的课堂”才可能真正唤起学生的生命主体意识,引领他们走上自主构建知识意义的发展路径。

高一数学《指数函数》优秀教案 8

一、教学目标:

1、知识与技能

(1)理解指数函数的概念和意义;

(2)与的图象和性质;

(3)理解和掌握指数函数的图象和性质;

(4)指数函数底数a对图象的影响;

(5)底数a对指数函数单调性的影响,并利用它熟练比较几个指数幂的大小

(6)体会具体到一般数学讨论方式及数形结合的思想。

2、情感、态度、价值观

(1)让学生了解数学来自生活,数学又服务于生活的哲理。

(2)培养学生观察问题,分析问题的能力。

二、重、难点:

重点:

(1)指数函数的概念和性质及其应用。

(2)指数函数底数a对图象的影响。

(3)利用指数函数单调性熟练比较几个指数幂的大小。

难点:

(1)利用函数单调性比较指数幂的大小。

(2)指数函数性质的归纳,概括及其应用。

三、教法与教具:

①学法:观察法、讲授法及讨论法。

②教具:多媒体。

四、教学过程:

第一课时

讲授新课

指数函数的定义

一般地,函数(>0且≠1)叫做指数函数,其中是自变量,函数的定义域为R。

提问:在下列的关系式中,哪些不是指数函数,为什么?

(1)(2)(3)

(4)(5)(6)

(7)(8)(>1,且)

小结:根据指数函数的定义来判断说明:因为>0,是任意一个实数时,是一个确定的实数,所以函数的定义域为实数集R。

若<0,如在实数范围内的函数值不存在。

若=1,是一个常量,没有研究的意义,只有满足的形式才能称为指数函数,不符合我们在学习函数的单调性的时候,主要是根据函数的图象,即用数形结合的方法来研究。先来研究的情况。

下面我们通过用计算机完成以下表格,并且用计算机画出函数的图象。

再研究,0<<1的情况,用计算机完成以下表格并绘出函数的图象。

从图中我们看出。

通过图象看出实质是上的。

讨论:的图象关于轴对称,所以这两个函数是偶函数,对吗?

②利用电脑软件画出的函数图象。

指数函数教学设计精选10篇

作业p76习题3-3A组2

课后反思:

高一数学《指数函数》优秀教案 9

一、教学类型

新知课

二、教学目标

1、理解指数函数的定义,初步掌握指数函数的定义域,值域及其奇偶性。

2、通过对指数函数的研究,使学生能把握函数研究的基本方法,激发学生的学习兴趣。

三、教学重点和难点

重点:理解指数函数的定义,把握图象和性质。

难点:认识底数对函数值影响的认识。

四、教学用具

投影仪

五、教学方法

启发讨论研究式

六、教学过程

1)引入新课

我们前面学习了指数运算,在此基础上,今天我们要来研究一类新的常见函数———————指数函数。指数函数(板书)

这类函数之所以重点介绍的原因就是它是实际生活中的一种需要。比如我们看下面的问题:

问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……一个这样的细胞分裂次后,得到的细胞分裂的个数与之间,构成一个函数关系,能写出与之间的函数关系式吗?

问题2:有一根1米长的绳子,第一次剪去绳长一半,第二次再剪去剩余绳子的一半,……剪了次后绳子剩余的长度为米,试写出与之间的函数关系。

1、定义:形如的函数称为指数函数。(板书)

教师在给出定义之后再对定义作几点说明。

2、几点说明(板书)

(1)关于对的规定:

(2)关于指数函数的定义域(板书)

(3)关于是否是指数函数的判断(板书)刚才分别认识了指数函数中底数,指数的要求,下面我们从整体的角度来认识一下,根据定义我们知道什么样的函数是指数函数,请看下面函数是否是指数函数。学生回答并说明理由,教师根据情况作点评,指出只有(1)和(3)是指数函数,其中(3)可以写成,也是指数图象。最后提醒学生指数函数的定义是形式定义,就必须在形式上一摸一样才行,然后把问题引向深入,有了定义域和初步研究的函数的性质,此时研究的关键在于画出它的图象,再细致归纳性质。

3、归纳性质

七、思考问题,设置悬念

八、小结

高一数学《指数函数》优秀教案 10

一、教学目标:

知识与技能:理解指数函数的概念,能够判断指数函数。

过程与方法:通过观察,分析、归纳、总结、自主建构指数函数的概念。领会从特殊到一般的数学思想方法,从而培养学生发现、分析、解决问题的能力。

情感态度与价值观:在指数函数的学习过程中,体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。

二、教学重点、难点:

教学重点:指数函数的概念,判断指数函数。教学难点:对底数的分类。

三、学情分析:

学生已经学习了函数的知识,指数函数是函数知识中重要的一部分内容,学生若能将其与学过的正比例函数、一次函数、二次函数进行对比着去理解指数函数的概念、性质、图象,则一定能从中发现指数函数的本质,所以对已经熟悉掌握函数的学生来说,学习本课并不是太难。学生通过对高中数学中函数的学习,对解决一些数学问题有一定的能力。通过教师启发式引导,学生自主探究完成本节课的学习。高一学生的认知水平从形象向抽象、从特殊向一般过渡,思维能力的提高是一个转折期,但是,学生的自主意识强,有主动学习的愿望与能力。有好奇心、好胜心、进取心,富有激情、思维活跃。

四、教学内容分析:

本节课是《普通高中课程标准实验教科书·数学(1)》(人教B版)第二章第一节第二课()《指数函数及其性质》。根据我所任教的学生的实际情况,我将《指数函数及其性质》划分为三节课(探究指数函数的概念,图象及其性质,指数函数及其性质的应用),这是第一节课“探究指数函数的概念”。指数函数是重要的基本初等函数之一,作为常见函数,它不仅是今后学习对数函数和幂函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究。函数及其图象在高中数学中占有很重要的位置。如何突破这个即重要又抽象的内容,其实质就是将抽象的符号语言与直观的图象语言有机的结合起来,通过具有一定思考价值的问题,激发学生的求知欲望――持久的好奇心。我们知道,函数的表示法有三种:列表法、图象法、解析法,以往的函数的学习大多只关注到图象的作用,这其实只是借助了图象的直观性,只是从一个角度看函数,是片面的。本节课,主要是让学生学会如何去发现研究心的函数,为后面学习对数函数、幂函数做出铺垫。

五、教学过程:

(一)创设情景

问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……一个这样的细胞分裂x次后,得到的细胞分裂的个数y与x之间,构成一个函数关系,能写出x与y之间的函数关系式吗?

问题2:《庄子·天下篇》中写道:“一尺之棰,日取其半,万世不竭。”请你写出截取x次后,木棰剩余量y关于x的函数关系式?

(二)导入新课

引导学生观察,两个函数中,有什么共同特征?

(三)新课讲授指数函数的定义

(四)巩固与练习例题

(五)课堂小结

(六)布置作业