首页 > 教学教案 > 教案大全 > 教学设计 > 认识负数教学设计(优秀4篇)正文

《认识负数教学设计(优秀4篇)》

时间:

作为一名教职工,就不得不需要编写教学设计,教学设计是对学业业绩问题的解决措施进行策划的过程。那么你有了解过教学设计吗?为大家精心整理了认识负数教学设计(优秀4篇),在大家参照的同时,也可以分享一下给您最好的朋友。

《认识负数》数学教案 篇1

教学片断:

(1)师出示:四个城市气温图:哈尔滨:-15~3℃北京:-5~5℃上海:0~8℃海口:12~20℃

师:有负数吗?读出来。北京-5℃和5℃一样吗?

零上的温度用什么表示?零下的温度用什么表示?0呢?

师:0正好是零上温度和零下温度的分界点。

(2)温度计。(教具:表示水银的位置可挪动)

师:每格代表1℃,请生拔出5℃。

拔-5℃。为什么拔不出来?

要先找到什么温度?

生:先找到0℃,这是分界点。

师:将温度计上的数揭开,越往上温度就越……

生:高。

师:再拿一个温度计请该生再拔-5℃。

拔-15℃。

比较两个温度(-5℃和-15℃)哪个更冷?怎么能说明-15℃比-5℃更冷了?

生:温度计上有表示。

生:-15℃在-5℃下面。

师:用你的动作和表情告诉我-15℃时的感觉。

我国新疆地区最冷时温度达到-40℃,大概在温度计的哪儿?

生:比划。

师:你能说几个正数和负数吗?

生:-10、-11。

师:一对一对说。

生1:+10、-20。

师:说得完吗?用省略号表示。

所有正数和0比,有什么关系?

所有负数和0比,有什么关系?(板书:负数<0<正数)

用一个圈把所有正数圈出来,用一个圈把所有的负数圈出来。

学生圈出了板书的正数和负数。

生:不同意,因为还有很多正、负数。要把省略号圈进去。

师:0,正数不要,负数不要。怎么办?

生:0是分界点。

六人小组讨论:0算正数吗?算负数吗?

学生汇报

生1:0算是自然数。

生2:0是正负数。

生3:它一个不是,是特殊的数。

师:正数比0?(大)负数比0?(小)0比0小吗?(0不是)0既不是正数,也不是负数。是分界点。

教后反思:

本案例教学以“学生”为本,体现数学是生活所需,实际所需,从而产生要学数学,要学有用的数学;体现数学的应用性和实践性,反映数学的价值观而设计的,我觉得数学教学要超越生活,数学知识虽然源于生活,但与现实的生活还是有一定距离的,毕竟数学是一门高度抽象、高度严密的学科。当数学教学找到了与生活的连接点,把数学现象规律用生活实际问题的解决来表现时,数学知识的学习就变的“通俗易懂”了。如本案例教学中从温度计认识与动手操作展开教学,教师先出示了各地的温度情况,接着引导学生认识温度计上的0刻度,然后进行0上和0下的温度读数教学。充分体现由整体认识到局部探索的教学策略,有效的突破了学生认识与探索的难点。总之学生通过观察、操作等活动,将原有的生活经验数学化,使学生从具体实物操作和形象感知发展到抽象地认识负数,进一步体验到正数与负数之间的区别与联系。

认识负数教学设计 篇2

教学目标:

1、结合现实情境,了解正数、负数的意义,会用正数、负数表示一些日常生活中具有相反意义的量,能借助温度计比较正、负数的大小。

2、在用正数、负数描述生活中具有相反意义量的过程中,体会正数、负数的作用,感受数学与生活的联系,激发学习数学的兴趣。

教学重点:

理解正数、负数的意义,体现正数、负数与生活的紧密联系。

教具准备:

多媒体课件、卡片

教学设计:

一、开门见山,引入新课

你知道这节课我们学习什么知识吗?你是怎么知道的?通过这节课你想知道正负数的哪些知识?

这节课我们重点来解决这几个问题:

出示本课目标:

1、正数、负数怎么读、写?

2、怎样用正数、负数表示一些具有相反意义的量?

3、正数、负数和0的大小关系是怎样的?

揭示课题:这节课我们就来学习正数、负数的认识(板书课题)

二、创设情景,初步感知正、负数

1、用自己的方法记录三组数据

老师说几组数据,请你记在记录单上,注意你的记录一定要让别人看明白。(附:记录单如下)

教师叙述:

第一组数据:一支球队在比赛中,上半场进了3个球,下半场丢了2个球。

第二组数据:本学期,我们班转入2人,转走1人。

第三组数据:王阿姨做生意,一月份赚了4000元,二月份赔了20xx元。

2、展示并交流

学生可能出现四种情况:(只写数字;数字前面写字;用符号;前面加正负号)。

师选择用文字表示的,用投影展示出来。

问:有没有与他不同的表示方法?学生会出示用符号表示的方法。

问:你为什么这样表示?

这两种记录方法否非常详细,你认为那种方法表示更好?为什么?当学生出现认为文字表示方法比较好的时候,我会这样引导:有的时候遇上不会写的字,或者出现错别字,采用这种文字表示,容易让别人错误的理解你的意思,所以,我们就采用不易理解错误的符号记录。

3、认识正负数

你们知道像+3这样的数叫什么吗?(正数)

观察正数,你发现了什么?(数字前面带了一个“+”)你会读吗?

生:读加三。

师导读:正三生齐读

象“—2”这样的数是什么数?(负数)

观察负数你发现了什么?(数字前面带了一个“—”)你会读吗?

生:负二生齐读

我们以前在什么地方见过“+、—”?(在加法算式和减法算式里)在数字前面,“+”是正号“—”是负号。

4、读统计单里的后面两组数据

5、抢读。—200、+3、8、—5、4、15、—7/8、—2/5、+5、4

问:请读出下面的数,并告诉大家你读的数是正数还是负数?(并分类贴于黑板相应位置)

师:15是什么数?15和前面的正数一样吗?你发现了什么?(15前面没有正号)这是为什么呢?(在表示正数时,正号可以省略不写)你会读这个数吗?

生:十五

你能总结出正数的读法吗?(读正数时,带“+”的,一定要读出“正”字;省略“+”的,这个“正”字也要省略不读。)

师:负号“—”,可以省略吗?为什么?

你能再说出一些负数吗?我们能说完吗?这说明什么?(负数的个数是无限的)正数的个数呢?

观察这些正、负数,正、负数可以是什么数?

正负数可以是整数,也可以是小数或分数。

三、联系生活,理解正、负数的运用

1、到中国的热极——新疆的吐鲁番去走走

我们刚认识了新朋友正负数,现在我们带着新朋友一起去美丽的新疆走走吧!(出示课件)

(!)吐鲁番素有“火洲”之称。夏季平均气温在38℃左右,盆地中心的气温达到49℃以上,有记录的地表气温达82℃。是中国最热的地方,堪称中国的“热极”

(2)“早穿皮袄午穿纱,围着火炉吃西瓜”说的是吐鲁番的日温差特别大。3月份日平均气温在零上13℃左右,日平均最低气温在零下3℃左右。

(3)四季温差也很大,夏季达到炎热的极致,但到冬季平均气温则降到零下10℃左右。

(4)吐鲁番盆地比海平面低155米,是我国地势最低的地方;而新疆天池则位于海平面以上8870米。

师:(1)出示课本信息窗的第二条信息,这些信息中的温度数据你能用正负数表示吗?(学生可能回答:零上温度用正数表示,零下温度用负数表示。)

为什么零上用+13,零下用—3表示呢?你是以什么为标准分的?学生讨论,让他们明白:0度是分界线

“0”刻度下面都表示什么温度?用什么数表示?“0”刻度上面都表示什么温度?用什么数表示?

那温度怎么用正、负数表示呢?“0”是正数还是负数?“0”上面是什么数?0和正数比较,你发现了什么?“0”下面是什么数?0和负数比较,你发现了什么?然后,在正数和负数的中间板书“0”)

(2)再次回到吐鲁番。它位于海平面以下155米,而新疆天池则位于海平面以上8870米,你能用正负数表示出这两个地方的位置吗?为什么这样表示?

这里的“海平面”相当于温度计里的哪个刻度?

(3)出示数轴:观察正负数的位置

这个数轴和我们以前见过的数轴一样吗?不一样在哪里?观察正负数的位置,你发现了什么?

总结:所有负数都比0小,正数都比0大。正数都比负数大。

2、正负数的其他运用

我们用正负数表示温度的高低、地势高低,还有刚上课时说到的进球、丢球、赚钱、赔钱,其实正负数还可以表示生活中许多这样相反的现象。

(1)如果上车12位乘客用+12表示,那么下车8位乘客用()表示。

(2)于老师家在学校北面1500米,可以表示为+1500米,那么刘晨家在学校南6000米,怎么表示?

(3)王叔叔三月份收入20xx元,支出800元,用正负数怎样表示?

(4)一个仓库,周一进货1000吨,周二出货360吨,用正负数怎样表示?

思考:每一题中的两个量都是什么关系?

说明:描述具有相反意义的量,可以用正、负数表示。

3、带着疑惑和思考 https://m.shancaoxiang.com/ 来看课本:P60—61、把重点知识用笔圈画下来。看完课本,你还有什么想说的吗?

四、巩固练习

1、完成课本自主练习1题和3题2、判断:

(1)海拔—155米表示比海平面低155米()

(2)温度0℃就是没有温度。()

(3)0大于所有的负数,正数大于负数()

(4)如果向南走记为正,那么—10米表示向东走10米。()

五、拓展知识

了解正、负数的历史课件出示史料,进一步了解负数的历史。中国是世界上最早认识和应用负数的国家。早在20xx多年前的《九章算术》中,就有正数和负数的记载。在古代人民生活中,以收入钱为正,以支出钱为负。在粮食生产中,以产量增加为正,以产量减少为负。古代的人们为区别正、负数,常用红色算筹表示正,黑色算筹表示负。而西方国家认识正负数则要迟于中国数百年。(生谈感受,思想教育。)听完介绍后你有什么感受?

六、课堂总结

这节课你有什么收获?你能用自己的语言描述你所理解的正数、负数吗?

板书设计:

正数、负数的认识

《认识负数》数学教案 篇3

教学目标:

1.初步感知相反意义的量,了解负数的意义。知道负数的写法、读法,初步会用负数表示一些日常生活中的量。

2.使学生在熟悉的生活情景中,经历数学化、符号化的过程,体会负数产生的必要性。

3.感受正负数和生活的密切联系,享受学习的乐趣,培养学生的数感。

教学重点:感悟正、负数的意义,能应用正、负数表示生活中具有相反意义的量。

教学难点:感悟负数的意义以及0的涵义。

教学准备:温度计 课件

教学过程:

一.情景引入

1、看图、观察。充分体验5℃与-5℃的含义

① 师:从这副图上上你看到了什么?

生:小女孩、房屋、还有一个温度计。

师:你知道温度计是干什么用的吗?

生:测量温度。

师:关于温度计你知道哪些?

生说。

师:你把老师要讲的都作了一一解释,而且讲得非常好,很不错,可以当小老师了。

② 师:我们再来看,从这副图中你看到了什么?与第一幅图比有什么不同?

生:这副图温度是0℃了,小男孩穿得厚些了,屋檐上结了冰。

师:0℃了,0℃有什么感觉?

生:很冷了,结冰了。

师:我们科学上规定,把自然状态下水刚开始结冰时的温度规定为0℃,这是有点冷了。

③师:我们再来看下一幅图,从这副图上你看到了什么?与前两幅图比,又有什么不一样?

生:下雪了,这时是零下5℃了。

师:零下5℃什么意思?

生:就是比0℃还要低。

师:你能用你自己喜欢的方式把它表示出来吗?

生表示。

师:为什么要这样表示?

生说。

师:真不错,你表示得和数学家表示的一模一样,大家也来说说,这样表示有什么好处?

生:简单、方便、容易写。

④好,我们继续来看,这副图与前几幅图比,又有什么变化?

生:更冷了,都零下10℃了。

师:零下10℃怎么表示?

生表示。

师:与前面的-5℃比哪个温度低?

生:-10℃低。

师:为什么?

生说。

像这样的数,我们把它叫什么?——负数。

今天我们就来“认识负数”。(板书)

二、展开

1.师:用负数来表示温度,大家在哪里看到过?

生:天气预报上。

生其他地方。

师:我从电视上收集来一组气温,我们来看看。

说说各个城市那天的温度分别是几度?

课件

师:武汉5℃,你能在气温计上找到它的位置吗?

师:北京-5℃,你能在气温计上找到它的位置吗?

生:标不出来,必须先找到0℃的位置。

师:为什么?

生说。

学生标出温度。

2.现在老师把这个温度计倒过来,在黑板上画了条线段表示温度计

0刻度左边表示低,右边表示高,可以用箭头来表示。你能指指各城市的温度在什么地方吗?

生指。

师:仔细观察这些温度,把这些温度分分类,你准备怎么分?

生分类。

师:像这一类数,比0小的叫——负数,前面像减号的叫“负号”。

比如:-8℃-5℃-1℃跟它相对的,比0大的这一类就叫正数,为了清晰地表示出来,有些时候数字前面写上“+”,读作正号。比如:+1+4+5+8。这些数都比0大,为了方便我们可以把“+”省略不写,负数都比0小,负号能省略吗?这里和0一样大的0是什么?

生:是正数。

师:我们刚才数比0大的数是正数,它比0大了吗?

生;既不是正数也不是负数。

3.师:我们再来看哪个城市最热?哪个城市最冷?

生说。

师:如果从低到高把这些温度排列起来,你会怎么排?

生排列温度。

师:0℃是上海。哪个城市比上海低,低几度?

生:-1℃比0℃低,低1℃。-3℃比0℃低,低3℃。-10℃比0℃低,低10℃。

师:北京是-5℃,哪个城市比它低,低几度?哪个城市比它高,高几度?

师:刚才在比温度的过程中,你发现了什么规律?

生说。

三.进一步深入

1.师:除了在温度上可以用负数来表示以外,你还在哪里看到过负数?

生举例。

师:我也收集了一些,看

股市图

师:这是电视上看来的信息,是当天的股市信息,这里有负数吗?表示什么意思?

生说。

如果你爸妈想去买里面的股票投资,你会建议你爸妈买什么股票呢?

1.我们再来看看,这是从上下载来的“之最”——最高的山峰是“珠穆朗玛峰”海拔8848米,海拔什么意思你知道吗?

生:海平面到山顶的高度。

师:为了比较高度,国际上统一以海平面为基准,珠穆朗玛峰比海平面高出8848米。

师:最低的地方是新疆吐鲁番,海拔-155米,什么意思?

生说。

3.除了以上有负数外,其实在我们身边也有很多负数。

用0表示迪迪的位置,迪迪左边4.5米的位置用+4.5米表示,那么-4.5米就可以表示。

如果迪迪上面4.5米的位置用+4.5米表示,那么-4.5米就可以表示。

如果迪迪右边4.5米的位置用+4.5米表示,那么-4.5米就可以表示。

如果迪迪下面4.5米的位置用+4.5米表示,那么-4.5米就可以表示。

师:同样是-4.5米,怎么一会儿表示左,一会儿表示右,一会儿表示上,一会儿又表示下了呢?为什么表示的意思会不同呢?

生说。

师:你的意思师说前面正数表示的意思变了。所以与它相反的负数表示意思也变了。只要与前面的意思相反就可以了。

四.

刚才我们认识了很多负数,同学们认真想一想,负数究竟是怎样的一种数?你能用自己的话说一说吗?

生说。

师:大家自己发现了很多,说起负数,是值得我们人骄傲自豪的,因为是最早发现、使用负数的国家,我们来看:(课件出示史料)

师:看完之后,你有什么要说的吗?

学生说一说。

五.举例说一说,生活中还有哪些量要用正数与负数来表示。

六.应用负数练习

1.请你当个“小管家”

下图是我家收支情况,请你在表格内用正负数记录我家的收支情况。

课件展示

2.最后出一道思考题请同学们思考。

上次开运动会,我们班王璐杰以 秒的成绩,获得了60米冠军,当时的风速是-0.04秒,这里风速-0.04秒是怎么回事?

学生说一说

师:如果当时风速是0.04秒的话,王璐杰跑步的成绩将会怎么样?

七、结语

快下课了,我们一起来回忆一下,我们这节课主要学习了什么?

你认为学得怎样?

思考题请同学们思考。

上次开运动会,我们班王璐杰以 秒的成绩,获得了60米冠军,当时的风速是-0.04秒,这里风速-0.04秒是怎么回事?

学生说一说

师:如果当时风速是0.04秒的话,王璐杰跑步的成绩将会怎么样?

认识负数教学设计 篇4

教学目标:

借助温度计,经历认识正、负数,用直线上的点表示及认识整数的过程。

2、初步了解负数的意义,会读、会写负数;知道整数包括正整数、零和负整数,能用直线上的点表示整数,会比较简单整数的大小。

3、积极参加数学活动,对负数充满好奇心,感受借助直观模型理解数学的作用。

教学重点:了解负数的意义,会读、会写负数。

教学难点:了解负数的意义及0的内涵。

教学过程:

一、游戏导入,初识负数

玩游戏:

师生互动:玩锤子、剪刀、布的游戏,向全班同学汇报自己的输赢结果。

经历符号化的过程:

生汇报:我赢2次,输2次板书(2 2)

师:输和赢它们的意思正好相反,老师这样记录能表示出这是两个意思相反的量吗?

生:不能

师:怎样记录才能让人一眼就分清这是两个意思相反的量?下面请大家用喜欢的方式来表示。

3、展示学生记录材料

生1:笑脸2哭脸2

生2:箭头向上2箭头向下2

生3:赢2输2

生4:+2 —2

4、师生共同交流比较,感受负数产生的必要性。

人们为了记录方便,在数学中就规定了这种符号表示具有相反意义的量。(板书:十、一)

5、认识正、负数。

师:你知道像上面的数叫什么?(正数)+2怎么读?

师:像下面的数呢?(负数)板书—2怎么读?

师板书:负数正数

—2 +2

6、快速抢答,说说下面的数是正数还是负数:—100、+15、—15、36、0

讨论:(1)36是正数还是负数?(认识正数为了简便+可以省略不写)正数去掉+,我们熟悉吗?负数去掉—行不行?

(2)0呢设置悬念

7、揭示课题:生活中的负数

二、探究气温中的正数和负数,进一步认识负数

1、出示某日气象预报数据:哈尔滨—15℃~3℃、北京—5℃~5℃、上海0℃~8℃、海口12℃~20℃

这几个温度哪些是负数温度?谁能用负数的'读法读一读?

2、生活中用什么测量温度?(出示温度计模型)

你了解温度计的什么知识?

生1:每格代表1℃

生2:零上的温度用正数表示,零下的温度用负数表示。

生3:零上温度和零下温度是以谁为分界的呢?(0℃)

科学家把自然状态下水刚开始结冰的温度定为0℃。

4、小组讨论:

零上温度都用正数表示,零下温度都用负数表示。那0呢?它算什么?是正数?负数?既不是正数也不是负数?

师讲述:0既不是正数也不是负数

5、巧用温度计,进一步理解负数的意义。

(1)-5℃在哪儿?怎样才能准确找到-5℃在温度计上的位置?是从哪儿开始数,往哪个方向数?

(2)出示5℃图,这是多少?你怎么看出来的?

(3)-5℃和5℃有什么不同?

(4)-5℃和—15℃哪个温度更冷?

三、生活中的应用。

1、写数:王叔叔从5楼乘电梯,电梯显示()层;到地下1层去取车,电梯显示()层。

2、(黄山、吐鲁番海拔与海平面对比示意图)

3、解释生活中的负数所表示的含义。

出示存折

4、下面每格表示1米,小华刚开始的位置在0处

(数轴)

(1)小华从0点向东行5米,表示为+5米,那么向西行3米,表示为

(2)如果小华的位置到了+7米,说明他向()行()米

(3)如果小华的位置到了—8米,说明他向()行()米

四、总结

教学后记:

教学中,借助温度计这个学生熟悉的事物和对气温数据的理解,初步认识负数的意义,学会比较简单整数的大小。