首页 > 教学教案 > 教案大全 > 教学设计 > 《一次函数》教学设计(精选4篇)正文

《《一次函数》教学设计(精选4篇)》

时间:

一次函数教案 篇1

教材分析

《一次函数》是人教版的义务教育课程标准实验教科书数学八年级上册第十九章的内容。本节内容是在学生学习函数的概念基础上进行学习的。教材首先是通过比较观察,然后找出所列方程的共同特点,进而确定一次函数的概念,并应用一次函数去解决一些实际问题。

通过对一次函数的概念的学习,加深巩固对函数概念的理解,是学习一次函数的图象和性质的前提。作为一种有效的数学模型,函数在现实生活中有着广泛的应用,而一次函数在现实情境和数学问题情境中的应用是学习的重点,熟练掌握一次函数的性质和应用,对今后学习反函数、二次函数会有直接的影响。

学情分析

学生在对代数式和函数认识的基础上学习的,因此为学习本节奠定了良好的基础。因为学生对一些具有规律性的问题充满了探求的欲望,同时也具备了一定的归纳、总结、表达的能力,基本上能够够在教师的引导下表达自己的观点和思想,他们同时具有较强烈的好奇心和求知欲,所以学习过程中教师要细心了解学生的内心世界,关注每一个变化,努力调动他们的学习积极性,要善于发现他们在学习过程中的闪光点,及时给予鼓励性的评价和引导。

教学目标

1、知道一次函数与正比例函数的意义。

2、能写出实际问题中正比例关系与一次函数关系的解析式。

3、激发学生学习数学的兴趣,培养学生分析问题、解决问题的能力。

教学重点和难点

教学重点:对于一次函数与正比例函数概念的理解。

教学难点:根据具体条件求一次函 www.haozuowen.net 数与正比例函数的解析式

教学过程

一、创设情景:

1、复习前四节所学内容。

2、做小游戏:

在一个自然长度为3厘米的弹簧秤下挂上不同重量的物体(已准备好砝码),观察弹簧长度的变化,把测得的数据填入表中相应的空格。

此实验由一位学生协助老师量出弹簧的长度,并填入表内空格。要求学生观察表格的数据并找出其中规律。并尝试列出物体重量x(千克)与弹簧长度y(厘米)的关系?

学生积极动脑、思考并回答。

y=3+0.5 x

通过实验来引入新课,吸引了学生的注意力,激发学生的求知欲,也能让学生体会到数学知识来源生活。

二、新授

[活动

(1)某登山队大本营所?在地的气温为5℃,海拔每升高1 km气温下降6℃,登山队员由大本营向上登高x km时,他们所在位置的气温是y℃,试用解析式表示y与x的关系。

教师引导学生思考、分析,列出解析式,并板书。

学生自己分析后同桌之间互相交流,并回答,教师做以纠正,评价。

通过实际问题的解决,激发学生学习兴趣,同时师生共同分析,得出函数解析式,为下面的问题的`解决提供必要的思路,启发学生思考。

[活动

下列问题中的变量间的对应关系可用怎样的函数表示?这些函数有什么共同点?

(2)有人发现,在20~50℃时蟋蟀每分鸣叫次数c与温度t (单位:℃)有关,即c的值约是t的7倍与35的差;

(3)一种计算成年人标准体重G(单位:千克)的方法是,以厘米为单位量出身高值h,再减去常数105,所得差是G的值;

(4)某城市的市内电话的月收费额y(单位:元)包括:月租费22元,拔打电话x分的计时费(按0.1元/分收取);

(5)把一个长10cm、宽5cm的长方形的长减少x cm,宽不变,长方形的面积y(单位:cm2)随x的值而变化;

教师提出问题,学生合作交流过程中,教师要参与到学生的活动中,发现个别问题及时解决,最后,在聆听学生发言后,给予积极的评价、鼓励和纠正。

学生先独立思考、分析、列出解析式,然后前后桌同学交流,总结出本组见解。

学生独立思考、分析、完成后,再进行组内交流,能够有自己思考的过程,有利于学生数学思维的形成,同时,也为合作交流奠定基础,只有学生先思考了,交流时才有话可说;通过多道题目学生才更容易找到一次函数形式上的共同特点,利于学生归纳、总结概念。

[活动3]

讨论

(1)这些函数在形式上有什么共同特点?

(2)一次函数概念:

教师积极引导学生发现在上述等式等号的右边都是关于一个字母的一次式。并且函数的形式是一样的。并归纳出一次函数的概念。

在学生思考、回答的基础上,教师要进行整理重点内容,并板书。

教师提出问题,合作交流过程中,教师要

参与到学生的活动中,发现个别问题及时解决,最后,在聆听学生发言后,给予积极的评价、鼓励和纠正。

学生先独立思考、分析,然后与同桌、前后桌讨论,最后派代表阐述本组见解,鼓励学生积极参与,合作交流,用自己的语言表达自己对问题的理解,发展学生的语言表达能力。同时,交流的过程中体会概念生成的过程,对概念能进一步深化

三、随堂练习:

1、(1)若y =5x 3m-2是正比例函数,则m = _______(2)若是一次函数,则m = _______

2、课本114页练习题

教师引导学生做题,并讲解分析。

学生先独立思考,做题,并同桌之间交流,最后,在老师的指导下进一步理解。以上两个问题设计从易到难,符合学生的认知规律,通过这两个问题主要是想让学生进一步掌握一次函数和正比例函数对比例系数和常数项的要求

四、归纳小结

教师启发学生思考回答下列问题,教师补充。

通过本节课的学习,让学生谈谈本节的收获和疑惑?

让学生自己小结,活跃课堂气氛,做到全员参与,加深对概念的理解,强化了重点,内化了知识,培养了能力。

五、布置作业

课本120页

习题14.2第3题

板书设计

1、一次函数的概念:一般地,形如y=kx+b的函数,我们称它为一次函数,这里的k称为一次项系数,b称为常数项。(k、b都是常是数,且k≠0。)

板书设计 篇2

14.2.2一次函数(1)

1、一次函数的概念例:

2、一次函数与正比例函数的关系练习:

一次函数教案 篇3

教学目标

(一)知识认知要求

1、认识一元一次方程与一次函数问题的转化关系;

2、学会用图象法求解方程;

3、进一步理解数形结合思想;

(二)能力训练要求

1、通过一元一次方程与一次函数的图象之间的结合,培养学生的数形结合意识;

2、训练大家能利用数学知识去解决实际问题的能力。

(三)情感与价值观要求

体验数、图形是有效地描述现实世界的重要手段,认识到数学是解决问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用。

教学重点与难点

1、理解一元一次不方程与一次函数的转化及本质联系。

2、掌握用图象求解方程的方法。

教学过程

一、提出问题

(1)方程2x+20=0;(2)函数y=2x+20

观察思考:二者之间有什么联系?

从数上看:方程2x+20=0的解,是函数y=2x+20的值为0时,对应自变量x的值

从形上看:函数y=2x+20与x轴交点的横坐标即为方程2x+20=0的解

根据上述问题,教师启发学生思考:

根据学生回答,教师总结:

由于任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某一个函数的值为0时,求相应的自变量的值。从图象上看,这相当于已知直线y=ax+b,确定它也x轴交点的横坐标的值。

二、典型例题:

例1、(书中例1)一个物体现在的速度是5米/秒,其速度每秒增加2米/秒,再过几秒它的速度为17米/秒?

一次函数教案 篇4

教学目标:

认知目标:1.了解一次函数与一元一次不等式的关系,会根据一次函数的图象解决一元一次不等式的求解问题。

2、学习用函数的观点看待不等式的方法,初步形成用全面的观点处理局部问题的。

能力情感目标:经历不等式与函数关系问题的探究过程,学习用联系的观点看待数学问题的辨证。

教学重点:一次函数与一元一次不等式的关系的理解。

教学难点:利用一次函数的图象确定一元一次不等式的解集。

教学过程:

一、探究新知:

通过上节课的学习,我们已经知道“解一元一次方程ax+b=0”与“求自变量为何值时,一次函数y=ax+b的值为0”是同一个问题。现在我们来看看:

(1)以下两个问题是否为同一个问题?

①解不等式:2x-4>0

②当x为何值时,函数y=2x-4的值大于0?

(2)你如何利用函数的图象来说明②?

(3)“解不等式2x-4<0”可以与怎样的一次函数问题是同一的?怎样在图象上加以说明?

归纳:解一元一次不等式ax+b>0(或ax+b<0)可以看作:当一次函数y=ax+b的值大(小)于0时,求自变量响应的取值范围。

二、应用新知:

1、练习:P42练习1(3)(4)

2、例2 用画函数图象的方法解不等式5x+4>2x+10.

思考:我们应该画出什么函数的图象来解?

思路1:将不等式化为3x-6>0,然后画出函数y=3x-6的图象。

思路2:将不等式5x+4>2x+10的两边分别看作两个一次函数,画出直线y=5x+4和直线y=2x+10,对于同一个x,直线y=5x+4上的点在直线y=2x+10上相应点的下方,这时

5x+4>2x+10.

三、巩固练习

1.P42练习2(2)

2.P45习题11.3第3、4题

四、

五、布置作业