首页 > 教学教案 > 教案大全 > 教学设计 > 九年级数学公开课《一元二次方程》教学设计【优秀4篇】正文

《九年级数学公开课《一元二次方程》教学设计【优秀4篇】》

时间:

作为一位无私奉献的人民教师,就有可能用到教案,教案是教材及大纲与课堂教学的纽带和桥梁。教案应该怎么写才好呢?的小编精心为您带来了九年级数学公开课《一元二次方程》教学设计【优秀4篇】,希望能够帮助到大家。

元二次方程的应用 篇1

本节是一元二次方程的应用的继续和发展,由于能用一元二次方程解的应用题,一般都可以用算术方法解而需要用一元二次方程来解的应用题,一般说是不能用算术方法来解的,所以讲本节可以使学生认识到用代数方法解应用题的优越性和必要性。

列一元二次方程解应用题,其应用相当广泛,如在几何、物理及其他学科中都有应用;其数量关系也比可以用一元一次方程解决的问题复杂的多。因此,本节所学习的内容,不仅是中学数学中的重点,也是难点。

在教学过程中,通过列一元二次方程解应用题提高学生的逻辑思维能力和分析、解决问题的能力。

元二次方程的应用 篇2

第一课时

一、教学目标

1.使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题。

2.通过列方程解应用问题,进一步体会提高分析问题、解决问题的能力。

3.通过列方程解应用问题,进一步体会代数中方程的思想方法解应用问题的优越性。

二、重点·难点·疑点及解决办法

1.教学重点:会用列一元二次方程的方法解有关数与数字之间的关系的应用题。

2.教学难点:根据数与数字关系找等量关系。

3.教学疑点:学生对列一元二次方程解应用问题中检验步骤的理解。

4.解决办法:列方程解应用题,就是先把实际问题抽象为数学问题,然后由数学问题的解决而获得对实际问题的解决。列方程解应用题,最重要的是审题,审题是列方程的基础,而列方程是解题的关键,只有在透彻理解题意的基础上,才能恰当地设出未知数,准确找出已知量与未知量之间的等量关系,正确地列出方程。

三、教学过程

1.复习提问

(1)列方程解应用问题的步骤?

①审题,②设未知数,③列方程,④解方程,⑤答。

(2)两个连续奇数的表示方法是,(n表示整数)

2.例题讲解

例1  两个连续奇数的积是323,求这两个数。

分析:(1)两个连续奇数中较大的奇数与较小奇数之差为2,(2)设元(几种设法)a.设较小的奇数为x,则另一奇数为,b.设较小的奇数为,则另一奇数为;c.设较小的奇数为,则另一个奇数。

以上分析是在教师的引导下,学生回答,有三种设法,就有三种列法,找三位学生使用三种方法,然后进行比较、鉴别,选出最简单解法。

解法(一)  设较小奇数为x,另一个为,

据题意,得

整理后,得

解这个方程,得。

由得,由得,

答:这两个奇数是17,19或者-19,-17。

解法(二)  设较小的奇数为,则较大的奇数为。

据题意,得

整理后,得

解这个方程,得。

当时,

当时,。

答:两个奇数分别为17,19;或者-19,-17。

第 1 2 页

数学《一元二次不等式》教学设计 篇3

一、教材分析

(一)教材的地位和作用

“一元二次不等式解法”既是初中一元一次不等式解法在知识上的延伸和发展,又是本章集合知识的运用与巩固,也为下一章函数的定义域和值域教学作铺垫,起着链条的作用。同时,这部分内容较好地反映了方程、不等式、函数知识的内在联系和相互转化,蕴含着归纳、转化、数形结合等丰富的数学思想方法,能较好地培养学生的观察能力、概括能力、探究能力及创新意识。

(二)教学内容

本节内容分2课时学习。本课时通过二次函数的图象探索一元二次不等式的解集。通过复习“三个一次”的关系,即一次函数与一元一次方程、一元一次不等式的关系;以旧带新寻找“三个二次”的关系,即二次函数与一元二次方程、一元二次不等式的关系;采用“画、看、说、用”的思维模式,得出一元二次不等式的解集,品味数学中的和谐美,体验成功的乐趣。

二、教学目标分析

根据教学大纲的要求、本节教材的特点和高一学生的认知规律,本节课的教学目标确定为:

知识目标——理解“三个二次”的关系;掌握看图象找解集的方法,熟悉一元二次不等式的解法。

能力目标——通过看图象找解集,培养学生“从形到数”的转化能力,“从具体到抽象”、“从特殊到一般”的归纳概括能力。

情感目标——创设问题情景,激发学生观察、分析、探求的学习激情、强化学生参与意识及主体作用。

三、重难点分析

一元二次不等式是高中数学中最基本的不等式之一,是解决许多数学问题的重要工具。本节课的重点确定为:一元二次不等式的解法。

要把握这个重点。关键在于理解并掌握利用二次函数的图象确定一元二次不等式解集的方法——图象法,其本质就是要能利用数形结合的思想方法认识方程的解,不等式的解集与函数图象上对应点的横坐标的内在联系。由于初中没有专门研究过这类问题,高一学生比较陌生,要真正掌握有一定的难度。因此,本节课的难点确定为:“三个二次”的关系。要突破这个难点,让学生归纳“三个一次”的关系作铺垫。

四、教法与学法分析

(一)学法指导

教学矛盾的主要方面是学生的学。学是中心,会学是目的。因此在教学中要不断指导学生学会学习。本节课主要是教给学生“动手画、动眼看、动脑想、动口说、善提炼、勤钻研”的研讨式学习方法,这样做增加了学生自主参与,合作交流的机会,教给了学生获取知识的途径、思考问题的方法,使学生真正成了教学的主体;只有这样做,才能使学生“学”有新“思”,“思”有新“得”,“练”有新“获”,学生也才会逐步感受到数学的美,会产生一种成功感,从而提高学生学习数学的兴趣;也只有这样做,课堂教学才富有时代特色,才能适应素质教育下培养“创新型”人才的需要。

(二)教法分析

本节课设计的指导思想是:现代认知心理学——建构主义学习理论。

建构主义学习理论认为:应把学习看成是学生主动的建构活动,学生应与一定的知识背景即情景相联系,在实际情景下进行学习,可以使学生利用已有知识与经验同化和索引出当前要学习的新知识,这样获取的知识,不但便于保持,而且易于迁移到陌生的问题情景中。

本节课采用“诱思引探教学法”。把问题作为出发点,指导学生“画、看、说、用”。较好地探求一元二次不等式的解法。

五、课堂设计

本节课的教学设计充分体现以学生发展为本,培养学生的观察、概括和探究能力,遵循学生的认知规律,体现理论联系实际、循序渐进和因材施教的教学原则,通过问题情境的创设,激发兴趣,使学生在问题解决的探索过程中,由学会走向会学,由被动答题走向主动探究。

(一)创设情景,引出“三个一次”的关系

本节课开始,先让学生解一元二次方程x2-x-6=0,如果我把“=”改成“”则变成一元二次不等式x2-x-60让学生解,学生肯定感到很突然。但是“思维往往是从惊奇和疑问开始”,这样直奔主题,目的在于构造悬念,激活学生的思维兴趣。

为此,我设计了以下几个问题:

1、请同学们解以下方程和不等式:

①2x-7=0;

②2x-70;

③2x-70

学生回答,我板书。

2、我指出:2x-70和2x-70的解实际上只需利用不等式基本性质就容易得到。

3、接着我提出:我们能否利用不等式的基本性质来解一元二次不等式呢?学生可能感到很困惑。

4、为此,我引入一次函数y=2x-7,借助动画从图象上直观认识方程和不等式的解,得出以下三组重要关系:

①2x-7=0的解恰是函数y=2x-7的图象与x轴

交点的横坐标。

②2x-70的解集正是函数y=2x-7的图象

在x轴的上方的点的横坐标的集合。

③2x-70的解集正是函数y=2x-7的图象

在x轴的下方的点的横坐标的集合。

三组关系的得出,实际上让学生找到了利用“一次函数的图象”来解一元一次方程和一元一次不等式的方法。让学生看到了解决一元二次不等式的希望,大大激发了学生解决新问题的兴趣。此时,学生很自然联想到利用函数y=x2-x-6的图象来求不等式x2-x-60的解集。

(二)比旧悟新,引出“三个二次”的关系

为此我引导学生作出函数y=x2-x-6的图象,按照“看一看 说一说 问一问”的思路进行探究。

看函数y=x2-x-6的图象并说出:

①方程x2-x-6=0的解是

x=-2或x=3 ;

②不等式x2-x-60的解集是

{x|x-2,或x3};

③不等式x2-x-60的解集是

{x|-23}。

此时,学生已经冲出了困惑,找到了利用二次函数的图象来解一元二次不等式的方法。

学生沉浸在成功的喜悦中,不妨趁热打铁问一问:如果把函数y=x2-x-6变为y=ax2+bx+c(a0),那么图象与x轴的位置关系又怎样呢?(学生回答:△0时,图象与x轴有两个交点;△=0时,图象与x轴只有一个交点;△0时,图象与x辆没有交点。)请同学们讨论:ax2+bx+c0与ax2+bx+c0的解集与函数y=ax2+bx+c的图象有怎样的关系?

(三)归纳提炼,得出“三个二次”的关系

1、引导学生根据图象与x轴的相对位置关系,写出相关不等式的解集。

2、此时提出:若a0时,怎样求解不等式ax2+bx+c0及ax2+bx+c0?(经讨论之后,有的学生得出:将二次项系数由负化正,转化为上述模式求解,教师应予以强调;也有的学生提出画出相应的二次函数图象,根据图象写出解集,教师应给予肯定。)

(四)应用新知,熟练掌握一元二次不等式的解集

借助二次函数的图象,得到一元二次不等式的解集,学生形成了感性认识,为巩固所学知识,我们一起来完成以下例题:

例1、解不等式2x2-3x-20

解:因为Δ0,方程2x2-3x-2=0的解是

x1= ,x2=2

所以,不等式的解集是

{ x| x ,或x2}

例1的解决达到了两个目的:一是巩固了一元二次不等式解集的应用;二是规范了一元二次不等式的解题格式。

下面我们接着学习课本例2。

例2 解不等式-3x2+6x2

课本例2的出现恰当好处,一方面突出了“对于二次项系数是负数(即a0)的一元二次不等式,可以先把二次项系数化为正数,再求解”;另一方面,学生对此例的解答极易出现写错解集(如出现“或”与“且”的错误)。

通过例1、例2的解决,学生与我一起总结了解一元二次不等式的一般步骤:一化正—二算△—三求根—四写解集。

例3 解不等式4x2-4x+10

例4 解不等式-x2+2x-30

分别突出了“△=0”、“△0”对不等式解集的影响。这两例由学生练习,教师巡视、指导,讲评学生完成情况,寻找学生中的闪光点,给予热情表扬。

4道例题,具有典型性、层次性和学生的可接受性。为了避免学生学后“一团乱麻”、“一盘散沙”的局面,我和学生一起总结。

(五)总结

解一元二次不等式的“四部曲”:

(1)把二次项的系数化为正数

(2)计算判别式Δ

(3)解对应的一元二次方程

(4)根据一元二次方程的根,结合图像(或口诀),写出不等式的解集。概括为:一化正→二算Δ→三求根→四写解集

(六)作业布置

为了使所有学生巩固所学知识,我布置了“必做题”;又为学有余力者留有自由发展的空间,我布置了“探究题”。

(1)必做题:习题1.5的1、3题

(2)探究题:

①若a、b不同时为零,记ax2+bx+c=0的解集为P,ax2+bx+c0的解集为M,ax2+bx+c0的解集为N,那么P∪M∪N=______________;

②已知不等式(k2+4k-5)x2+4(1-k)x+30的解集是R,求实数k的取值范围。

(七)板书设计

一元二次不等式解法(1)

五、教学效果评价

本节课立足课本,着力挖掘,设计合理,层次分明。以“三个一次关系→三个二次关系→一元二次不等式解法”为主线,以“从形到数,从具体到抽象,从特殊到一般”为灵魂,以“画、看、说、用”为特色,把握重点,突破难点。在教学思想上既注重知识形成过程的教学,还特别突出学生学习方法的指导,探究能力的训练,创新精神的培养,引导学生发现数学的美,体验求知的乐趣。

数学《一元二次方程》教案设计 篇4

教学目标

1、了解整式方程和一元二次方程的概念;

2、知道一元二次方程的一般形式,会把一元二次方程化成一般形式。

3、通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。

教学重点和难点:

重点:一元二次方程的概念和它的一般形式。

难点:对一元二次方程的一般形式的正确理解及其各项系数的确定。

教学建议:

1、教材分析:

1)知识结构:本小节首先通过实例引出一元二次方程的概念,介绍了一元二次方程的一般形式以及一元二次方程中各项的名称。

2)重点、难点分析

理解一元二次方程的定义:

是一元二次方程的重要组成部分。方程,只有当时,才叫做一元二次方程。如果且,它就是一元二次方程了。解题时遇到字母系数的方程可能出现以下情况:

(1)一元二次方程的条件是确定的,如方程( ),把它化成一般形式为,由于,所以,符合一元二次方程的定义。

(2)条件是用“关于的一元二次方程”这样的语句表述的,那么它就隐含了二次项系数不为零的条件。如“关于的一元二次方程”,这时题中隐含了的条件,这在解题中是不能忽略的。

(3)方程中含有字母系数的项,且出现“关于的方程”这样的语句,就要对方程中的字母系数进行讨论。如:“关于的方程”,这就有两种可能,当时,它是一元一次方程;当时,它是一元二次方程,解题时就会有不同的结果。