《高中数学说课稿优秀7篇》
作为一名专为他人授业解惑的人民教师,通常需要用到说课稿来辅助教学,说课稿可以帮助我们提高教学效果。怎么样才能写出优秀的说课稿呢?这次为您整理了高中数学说课稿优秀7篇,希望可以启发、帮助到大家。
高中数学说课稿 篇1
一、教材分析
1· 教材的地位和作用
在学习这节课以前,我们已经学习了振幅变换。本节知识是学习函数图象变换综合应用的基础,在教材地位上显得十分重要。
y=asin(ωx+φ)图象变换的学习有助于学生进一步理解正弦函数的图象和性质,加深学生对函数图象变换的理解和认识,加深数形结合在数学学习中的应用的认识。同时为相关学科的学习打下扎实的基础。
⒉教材的重点和难点
重点是对周期变换、相位变换规律的理解和应用。
难点是对周期变换、相位变换先后顺序的调整,对图象变换的影响。
⒊教材内容的安排和处理
函数y=asin(ωx+φ)图象这部分内容计划用3课时,本节是第2课时,主要学习周期变换和相位变换,以及两种变换的综合应用。
二、目的分析
⒈知识目标
掌握相位变换、周期变换的变换规律。
⒉能力目标
培养学生的观察能力、动手能力、归纳能力、分析问题解决问题能力。
⒊德育目标
在教学中努力培养学生的“由简单到复杂、由特殊到一般”的辩证思想,培养学生的探究能力和协作学习的能力。
⒋情感目标
通过学数学,用数学,进而培养学生对数学的兴趣。
三、教具使用
①本课安排在电脑室教学,每个学生都拥有一台计算机,所有的计算机由一套多媒体演示控制系统连接,以实现师生、生生的相互沟通。
②课前应先把本课所需要的几何画板课件通过多媒体演示系统发送到每一台学生电脑。
四、教法、学法分析
本节课以“探究——归纳——应用”为主线,通过设置问题情境,引导学生自主探究,总结规律,并能应用规律分析问题、解决问题。
以学生的自主探究为主要方式,把计算机使用的主动权交给学生,让学生主动去学习新知、探究未知,在活动中学习数学、掌握数学,并能数学地提出问题、解决问题。
五、教学过程
教学过程设计:
预备知识
一、问题探究
⑴师生合作探究周期变换
⑵学生自主探究相位变换
二、归纳概括
三、实践应用
教学程序
设计说明
〖预备知识
1我们已经学习了几种图象变换?
2这些变换的规律是什么?
帮助学生巩固、理解和归纳基础知识,为后面的学习作铺垫。促使学生学会对知识的归纳梳理。
〖问题探究
(一)师生合作探究周期变换
(1)自己动手,在几何画板中分别观察①y=sinx→y=sin2x;②y=sinx→y=sin
x图象的变换过程,指出变换过程中图象上每一个点的坐标发生了什么变化。
(2) 在上述变换过程中,横坐标的伸长和缩短与ω之间存在怎样的关系?
(二)学生自主探究相位变换
(1)我们初中学过的由y=f(x)→y=f(x+a)的图象变换规律是怎样的?
(2) 令f(x)=sinx,则f(x+φ)=sin (x+φ),那么y=sinx→y=sin (x+φ)的变换是不是也符合上述规律呢?请动手用几何画板加以验证。
设计这个问题的主要用意是让学生通过观察图象变换的过程,了解周期变换的基本规律。
设计这个问题意图是引导学生再次认真观察图象变换的过程,以便总结周期变换的规律。
师生合作探究已经让学生掌握了探究图象变换的基本方法,在此基础上,由学生自主探究相位变换规律,提高学生的综合能力。
〖归纳概括
通过以上探究,你能否总结出周期变换和相位变换的一般规律?
设计这个环节的意图是通过对上述变换过程的探究,进而引导学生归纳概括,从现象到本质,总结出周期变换和相位变换的一般规律。
〖实践应用
(一)应用举例
(1)用五点法作出y=sin(2x+)一个周期内的简图。
(2)我们可以通过哪些方法完成y=sinx到y=sin(2x+)的图象变换
(3)请动手验证上述方法,把几何画板所得图象与用五点法作出的简图作比较,观察哪些方法是正确的,哪些方法是错误的。
(4)归纳总结
从上述的变换过程中,我们知道若f(x) =sin2x,则f(___)= sin(2x+),由f(x)→f(x+a)的变换规律得从y=sin2x →y= sin(2x+)的变换应该是_____.
(二)分层训练
a组题(基础题)
如何完成下列图象的变换:
①y=sin3x→y=sin(3x+1)
②y=sin(x+1) →y=sin(3x+1)
b组题(中等题)
如何完成下列图象的变换:
①y=sin3x→y=sin(3x+1)
②y=sin(x+1) →y=sin(3x+1)
③y=sinx →y=sin(3x+1)
c组题(拓展题)
①如何完成下列图象的变换:
y=sinx →y=sin(3x+1)
②我们知道,从f(x)到f(x)+k的变换可通过图象的上下平移(k>0上移)(k<0下移)|k|个单位得到。那么由y=f(x)→y=af(x)+k的变换中,振幅变换和上下平移变换是不是也有先后顺序呢?请通过实例加以验证。
让学生用五点法作出这个图象是为了验证变换方法是否正确。
给出这个问题的用意是开拓学生的思维,让学生从多角度思考问题。
这个步骤主要目的是培养学生的探究能力和动手能力。
这个问题的解决,是突破本课难点的关键。通过问题的解决,让学生理解如果先进行周期变换,而后进行相位变换,应特别关注x的变化量。
a组题重在基础知识的掌握,
由基础较薄弱的同学完成。
b组比a组增加了第③小题,
重在对两种变换的综合应用。
c组除了考查知识的综合应用,
还要求学生对新问题进行探究,
有较大难度,适合基础较好的
同学完成。
作业:
(1)必做题
(2)选做题
作业分为两种形式,体现作业的巩固性和发展性原则。选做题不作统一要求,供学有余力的学生课后研究。
六、评价分析
在本节的教与学活动中,始终体现以学生的发展为本的'教育理念。在学生已有的认知基础上进行设问和引导,关注学生的认知过程,注意学生的品德、思维和心理等方面的发展。重视动手能力的培养,重视问题探究意识和能力的培养。同时,考虑不同学生的个性差异和发展层次,使不同的学生得到不同的发展,体现因材施教原则。
调节与反馈:
⑴验证两种变换的综合时,可能会出现有些学生无法观察到两种变换的区别这种情况,此时,教师除了加以引导外,还需通过教师演示和详细讲解加以解决。
⑵教学中可能出现个别学生无法正确操作课件的情况,这种情况下一定要强调学生的协作意识。
附:板书设计
高中数学说课稿 篇2
一、教材结构与内容简析
1本节内容在全书及章节的地位:
《向量》出现在高中数学第一册(下)第五章第1节。本节内容是传统意义上《平面解析几何》的基础部分,因此,在《数学》这门学科中,占据极其重要的地位。
2数学思想方法分析:
(1)从“向量可以用有向线段来表示”所反映出的“数”与“形”之间的转化,就可以看到《数学》本身的“量化”与“物化”。
(2)从建构手段角度分析,在教材所提供的材料中,可以看到“数形结合”思想。
二、教学目标
根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:
1基础知识目标:掌握“向量”的概念及其表示方法,能利用它们解决相关的问题。
2能力训练目标:逐步培养学生观察、分析、综合和类比能力,会准确地阐述自己的思路和观点,着重培养学生的认知和元认知能力。
3创新素质目标:引导学生从日常生活中挖掘数学内容,培养学生的发现意识和整合能力;《向量》的教学旨在培养学生的“知识重组”意识和“数形结合”能力。
4个性品质目标:培养学生勇于探索,善于发现,独立意识以及不断超越自我的创新品质。
三、教学重点、难点、关键
重点:向量概念的引入。
难点:“数”与“形”完美结合。
关键:本节课通过“数形结合”,着重培养和发展学生的认知和变通能力。
四、教材处理
建构主义学习理论认为,建构就是认知结构的组建,其过程一般是先把知识点按照逻辑线索和内在联系,串成知识线,再由若干条知识线形成知识面,最后由知识面按照其内容、性质、作用、因果等关系组成综合的知识体。本课时为何提出“数形结合”呢,应该说,这一处理方法正是基于此理论的体现。其次,本节课处理过程力求达到解决如下问题:知识是如何产生的?如何发展?又如何从实际问题抽象成为数学问题,并赋予抽象的数学符号和表达式,如何反映生活中客观事物之间简单的和谐关系。
五、教学模式
教学过程是教师活动和学生活动的十分复杂的动态性总体,是教师和全体学生积极参与下,进行集体认识的过程。教为主导,学为主体,又互为客体。启动学生自主性学习,启发引导学生实践数学思维的过程,自得知识,自觅规律,自悟原理,主动发展思维和能力。
六、学习方法
1、让学生在认知过程中,着重掌握元认知过程。
2、使学生把独立思考与多向交流相结合。
七、教学程序及设想
(一)设置问题,创设情景。
1、提出问题:在日常生活中,我们不仅会遇到大小不等的量,还经常会接触到一些带有方向的量,这些量应该如何表示呢?
2、(在学生讨论基础上,教师引导)通过“力的图示”的回忆,分析大小、方向、作用点三者之间的关系,着重考虑力的作用点对运动的相对性与绝对性的影响。
设计意图:
1、把教材内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”、惊讶、困惑、感到棘手,紧张地沉思,期待寻找理由和论证的过程。
2、我们知道,学习总是与一定知识背景即情境相联系的。在实际情境下进行学习,可以使学生利用已有知识与经验,同化和索引出当前学习的新知识。这样获取的知识,不但便于保持,而且易于迁移到陌生的问题情境中。
(二)提供实际背景材料,形成假说。
1、小船以0。5m/s的速度航行,已知一条河长xxxxm,宽150m,问小船需经过多长时间,到达对岸?
2、到达对岸?这句话的实质意义是什么?(学生讨论,期望回答:指代不明。)
3、由此实际问题如何抽象为数学问题呢?(学生交流讨论,期望回答:要确定某些量,有时除了知道其大小外,还需要了解其方向。)
设计意图:
1、教师范文吧在稍稍超前于学生智力发展的边界上(即思维的最邻近发展)通过问题引领,来促成学生“数形结合”思想的形成。
2。通过学生交流讨论,把实际问题抽象成为数学问题,并赋予抽象的数学符号和表达方式。
(三)引导探索,寻找解决方案。
1、如何补充上面的题目呢?从已学过知识可知,必须增加“方位”要求。
2。方位的实质是什么呢?即位移的本质是什么?期望回答:大小与方向的统一。
3、零向量、单位向量、平行向量、相等向量、共线向量等系列化概念之间的关系是什么?(明确要领。)
设计意图:
学生在教师引导下,在积累了已有探索经验的基础上,进行讨论交流,相互评价,共同完成了“数形结合”思想上的建构。
2、这一问题设计,试图让学生不“唯书”,敢于和善于质疑批判和超越书本和教师,这是创新素质的突出表现,让学生不满足于现状,执着地追求。
3、尽可能地揭示出认知思想方法的全貌,使学生从整体上把握解决问题的方法。
(四)总结结论,强化认识。
经过引导,学生归纳出“数形结合”的思想——“数”与“形”是一个问题的两个方面,“形”的外表里,蕴含着“数”的本质。
设计意图:促进学生数学思想方法的形成,引导学生确实掌握“数形结合”的思想方法。
(五)变式延伸,进行重构。
教师引导:在此我们已经知道,欲解决一些抽象的数学问题,可以借助于图形来解决,这就是向量的理论基础。
下面继续研究,与向量有关的一些概念,引导学生利用模型演示进行观察。
概念1:长度为0的向量叫做零向量。
概念2:长度等于一个单位长度的向量,叫做单位向量。
概念3:方向相同或相反的非零向量叫做平行(或共线)向量。(规定:零向量与任一向量平行。)
概念4:长度相等且方向相同的向量叫做相等向量。
设计意图:
1。学生在教师引导下,在积累了已有探索经验的基础上进行讨论交流,相互评价,共同完成了有向线段与向量两者关系的建构。
2。这些概念的比较可以让学生加强对“向量”概念的理解,以便更好地“数形结合”。
3。让学生对教学思想方法,及其应情境达到较为纯熟的认识,并将这种认识思维地贮存在大脑中,随时提取和应用。
(六)总结回授调整。
1。知识性内容:
例设O是正六边形ABCDEF的中心,分别写出图中与向量OA、OB、OC相等的向量。
2。对运用数学思想方法创新素质培养的小结:
a。要善于在实际生活中,发现问题,从而提炼出相应的数学问题。发现作为一种意识,可以解释为“探察问题的意识”;发现作为一种能力,可以解释为“找到新东西”的能力,这是培养创造力的基本途径。
b。问题的解决,采用了“数形结合”的数学思想,体现了数学思想方法是解决问题的根本途径。
c。问题的变式探究的过程,是一个创新思维活动过程中一种多维整合过程。重组知识的过程,是一种多维整合的过程,是一个高层次的知识综合过程,是对教材知识在更高水平上的概括和总结,有利于形成一个自我再生力强的开放的动态的知识系统,从而使得思维具有整体功能和创新能力。
2。设计意图:
1、知识性内容的总结,可以把课堂教学传授的知识,尽快转化为学生的素质。
2、运用数学方法创新素质的小结,能让学生更系统,更深刻地理解数学思想方法在解题中的地位和作用,并且逐渐培养学生的良好个性品质。这是每堂课必不可少的一个重要环节。
(七)布置作业。
反馈“数形结合”的探究过程,整理知识体系,并完成习题5。1的内容。
高中数学说课稿 篇3
各位评委老师好:今天我说课的题目是
是必修章第节的内容,我将以新课程标准的理念指导本节课的教学,从教材分析,教法学法,教学过程,教学评价四个方面加以说明。
一、 教材分析
是在学习了基础上进一步研究 并为后面学习 做准备,在整个
高中数学中起着承上启下的作用,因此本节内容十分重要。
根据新课标要求和学生实际水平我制定以下教学目标
1、 知识能力目标:使学生理解掌握
2、 过程方法目标:通过观察归纳抽象概括使学生构建领悟 数学思想,培养 能力
3、 情感态度价值观目标:通过学习体验数学的科学价值和应用价值,培养善于
观察勇于思考的学习习惯和严谨 的科学态度
根据教学目标、本节特点和学生实际情况本节重点是 ,由于学生对 缺少感性认识,所以本节课的重点是
二、教法学法
根据教师主导地位和学生主体地位相统一的规律,我采用引导发现法为本节课的主要教学方法并借助多媒体为辅助手段。在教师点拨下,学生自主探索、合作交流来寻求解决问题的方法。
三、 教学过程
四、 教学程序及设想
1、由……引入:
把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”,继而紧张地沉思,期待寻找理由和证明过程。 在实际情况下进行学习,可以使学生利用已有知识与经验,同化和索引出当前学习的新知识,这样获取的知识,不但易于保持,而且易于迁移到陌生的问题情境中。
对于本题:……
2、由实例得出本课新的知识点是:……
3、讲解例题。
我们在讲解例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于发展学生的思维能力。在题中:
4、能力训练。
课后练习……
使学生能巩固羡慕自觉运用所学知识与解题思想方法。
5、总结结论,强化认识。
知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标。
6、变式延伸,进行重构。
重视课本例题,适当对题目进行引申,使例题的作用更加突出,有利于学生对知识的串联、累积、加工,从而达到举一反三的效果。
五、教学评价
学生学习的学习结果评价当然重要,但是更重要的是学生学习的过程评价,教师应
当高度重视学生学习过程中的参与度、自信心、团队精神合作意识数学能力的发现,以及学习的兴趣和成就感。
高中数学说课稿 篇4
本节课讲述的是人教版高一数学(上)3.2等差数列(第一课时)的内容。
一、教材分析
1、教材的地位和作用:
数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面,数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。
2、教学目标
根据教学大纲的要求和学生的实际水平,确定了本次课的教学目标
a在知识上:理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想;初步引入“数学建模”的思想方法并能运用。
b在能力上:培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。
c在情感上:通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。
3、教学重点和难点
根据教学大纲的要求我确定本节课的教学重点为:
①等差数列的概念。
②等差数列的通项公式的推导过程及应用。
由于学生第一次接触不完全归纳法,对此并不熟悉因此用不完全归纳法推导等差数列的同项公式是这节课的一个难点。同时,学生对“数学建模”的思想方法较为陌生,因此用数学思想解决实际问题是本节课的另一个难点。
二、学情教法分析:
对于三中的高一学生,知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了教强的抽象思维能力和演绎推理能力,所以我在授课时注重引导、启发、研究和探讨以符合
这类学生的心理发展特点,从而促进思维能力的进一步发展。
针对高中生这一思维特点和心理特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。
三、学法指导:
在引导分析时,留出学生的思考空间,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。
四、教学程序
本节课的教学过程由(一)复习引入(二)新课探究(三)应用举例(四)反馈练习(五)归纳小结(六)布置作业,六个教学环节构成。
(一)复习引入:
1、从函数观点看,数列可看作是定义域为__________对应的一列函数值,从而数列的通项公式也就是相应函数的______。(N﹡;解析式)
通过练习1复习上节内容,为本节课用函数思想研究数列问题作准备。
2、小明目前会100个单词,他她打算从今天起不再背单词了,结果不知不觉地每天忘掉2个单词,那么在今后的五天内他的单词量逐日依次递减为:100,98,96,94,92 ①
3、 小芳只会5个单词,他决定从今天起每天背记10个单词,那么在今后的五天内他的单词量逐日依次递增为5,10,15,20,25 ②
通过练习2和3引出两个具体的等差数列,初步认识等差数列的特征,为后面的概念学习建立基础,为学习新知识创设问题情境,激发学生的求知欲。由学生观察两个数列特点,引出等差数列的概念,对问题的总结又培养学生由具体到抽象、由特殊到一般的认知能力。
(二) 新课探究
1、由引入自然的给出等差数列的概念:
如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列,
这个常数叫做等差数列的公差,通常用字母d来表示。强调:
① “从第二项起”满足条件;
②公差d一定是由后项减前项所得;
③每一项与它的前一项的差必须是同一个常数(强调“同一个常数” );
在理解概念的基础上,由学生将等差数列的文字语言转化为数学语言,归纳出数学表达式:
an+1-an=d (n≥1)同时为了配合概念的理解,我找了5组数列,由学生判断是否为等差数列,是等差数列的找出公差。
1、 9 ,8,7,6,5,4,??;√ d=-1
2、 0.70,0.71,0.72,0.73,0.74??;√ d=0.01
3、 0,0,0,0,0,0,??。; √ d=0
4、 1,2,3,2,3,4,??;×
5、 1,0,1,0,1,??×
其中第一个数列公差0,第三个数列公差=0
由此强调:公差可以是正数、负数,也可以是0
2、第二个重点部分为等差数列的通项公式
在归纳等差数列通项公式中,我采用讨论式的教学方法。给出等差数列的首项,公差d,由学生研究分组讨论a4的通项公式。通过总结a4的通项公式由学生猜想a40的通项公式,进而归纳an的通项公式。整个过程由学生完成,通过互相讨论的方式既培养了学生的协作意识又化解了教学难点。
若一等差数列{an }的首项是a1,公差是d,则据其定义可得:
a2 - a1 =d 即: a2 =a1 +d
a3 – a2 =d 即: a3 =a2 +d = a1 +2d
a4 – a3 =d 即: a4 =a3 +d = a1 +3d
??
猜想: a40 = a1 +39d,进而归纳出等差数列的通项公式:
an=a1+(n-1)d
此时指出:这种求通项公式的办法叫不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,在这里向学生介绍另外一种求数列通项公式的办法------迭加法:
a2 – a1 =d
a3 – a2 =d
a4 – a3 =d
??
an – an-1=d
将这(n-1)个等式左右两边分别相加,就可以得到 an– a1= (n-1) d即 an= a1+(n-1) d
(1)
当n=1时,(1)也成立,
所以对一切n∈N﹡,上面的公式都成立
因此它就是等差数列{an}的通项公式。
在迭加法的证明过程中,我采用启发式教学方法。
利用等差数列概念启发学生写出n-1个等式。
对照已归纳出的通项公式启发学生想出将n-1个等式相加。证出通项公式。
在这里通过该知识点引入迭加法这一数学思想,逐步达到“注重方法,凸现思想” 的教学要求
接着举例说明:若一个等差数列{an}的首项是1,公差是2,得出这个数列的通项公式是:an=1+(n-1)×2 ,
即an=2n-1 以此来巩固等差数列通项公式运用
同时要求画出该数列图象,由此说明等差数列是关于正整数n一次函数,其图像是均匀排开的无穷多个孤立点。用函数的思想来研究数列,使数列的性质显现得更加清楚。
(三)应用举例
这一环节是使学生通过例题和练习,增强对通项公式含义的理解以及对通项公式的运用,提高解决实际问题的能力。通过例1和例2向学生表明:要用运动变化的观点看等差数列通项公式中的a1、d、n、an这4个量之间的关系。当其中的部分量已知时,可根据该公式求出另
一部分量。
例1 (1)求等差数列8,5,2,?的第20项;第30项;第40项
(2)-401是不是等差数列-5,-9,-13,?的项?如果是,是第几项?
在第一问中我添加了计算第30项和第40项以加强巩固等差数列通项公式;第二问实际上是求正整数解的问题,而关键是求出数列的通项公式an.
例2 在等差数列{an}中,已知a5=10,a12 =31,求首项a1与公差d。
在前面例1的基础上将例2当作练习作为对通项公式的巩固
例3 是一个实际建模问题
建造房屋时要设计楼梯,已知某大楼第2层的楼底离地面的高度为3米,第三层离地面5.8米,若楼梯设计为等高的16级台阶,问每级台阶高为多少米?
这道题我采用启发式和讨论式相结合的教学方法。启发学生注意每级台阶“等高”使学生想到每级台阶离地面的高度构成等差数列,引导学生将该实际问题转化为数学模型------等差数列:(学生讨论分析,分别演板,教师评析问题。问题可能出现在:项数学生认为是16项,应明确a1为第2层的楼底离地面的高度,a2表示第一级台阶离地面的高度而第16级台阶离地面高度为a17,可用课件展示实际楼梯图以化解难点)。
设置此题的目的:1.加强同学们对应用题的综合分析能力,2.通过数学实际问题引出等差数列问题,激发了学生的兴趣;3.再者通过数学实例展示了“从实际问题出发经抽象概括建立数学模型,最后还原说明实际问题的“数学建模”的数学思想方法
(四)反馈练习
1、小节后的练习中的第1题和第2题(要求学生在规定时间内完成)。目的:使学生熟悉通项公式,对学生进行基本技能训练。
2、书上例3)梯子的最高一级宽33cm,最低一级宽110cm,中间还有10级,各级的宽度成等差数列。计算中间各级的宽度。
目的:对学生加强建模思想训练。
3、若数例{an} 是等差数列,若 bn = k an ,(k为常数)试证明:数列{bn}是等差数列
此题是对学生进行数列问题提高训练,学习如何用定义证明数列问题同时强化了等差数列的概念。
(五)归纳小结(由学生总结这节课的收获)
1、等差数列的概念及数学表达式.
强调关键字:从第二项开始它的每一项与前一项之差都等于同一常数
2、等差数列的通项公式 an= a1+(n-1) d会知三求一
3.用“数学建模”思想方法解决实际问题
(六)布置作业
必做题:课本P114 习题3.2第2,6 题
选做题:已知等差数列{an}的首项a1=-24,从第10项开始为正数,求公差d的取值范围。
(目的:通过分层作业,提高同学们的求知欲和满足不同层次的学生需求)
五、板书设计
在板书中突出本节重点,将强调的地方如定义中,“从第二项起”及“同一常数”等几个字用红色粉笔标注,同时给学生留有作题的地方,整个板书充分体现了精讲多练的教学方法。
高中数学说课稿 篇5
一、教学目标
1.掌握任意角的正弦、余弦、正切函数的定义(包括定义域、正负符号判断);了解任意角的余切、正割、余割函数的定义。
2.经历从锐角三角函数定义过度到任意角三角函数定义的推广过程,体验三角函数概念的产生、发展过程。领悟直角坐标系的工具功能,丰富数形结合的经验。
3.培养学生通过现象看本质的唯物主义认识论观点,渗透事物相互联系、相互转化的辩证唯物主义世界观。
4.培养学生求真务实、实事求是的科学态度。
二、重点、难点、关键
重点:任意角的正弦、余弦、正切函数的定义、定义域、(正负)符号判断法。
难点:把三角函数理解为以实数为自变量的函数。
关键:如何想到建立直角坐标系;六个比值的确定性(α确定,比值也随之确定)与依赖性(比值随着α的变化而变化)。
三、教学理念和方法
教学中注意用新课程理念处理传统教材,学生的数学学习活动不仅要接受、记忆、模仿和练习,而且要自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程。
根据本节课内容、高一学生认知特点和我自己的教学风格,本节课采用"启发探索、讲练结合"的方法组织教学。
四、教学过程
[执教线索:
回想再认:函数的概念、锐角三角函数定义(锐角三角形边角关系)--问题情境:能推广到任意角吗?--它山之石:建立直角坐标系(为何?)--优化认知:用直角坐标系研究锐角三角函数--探索发展:对任意角研究六个比值(与角之间的关系:确定性、依赖性,满足函数定义吗?)--自主定义:任意角三角函数定义--登高望远:三角函数的要素分析(对应法则、定义域、值域与正负符号判定)--例题与练习--回顾小结--布置作业]
(一)复习引入、回想再认
开门见山,面对全体学生提问:
在初中我们初步学习了锐角三角函数,前几节课,我们把锐角推广到了任意角,学习了角度制和弧度制,这节课该研究什么呢?
探索任意角的三角函数(板书课题),请同学们回想,再明确一下:
(情景1)什么叫函数?或者说函数是怎样定义的?
让学生回想后再点名回答,投影显示规范的定义,教师根据回答情况进行修正、强调:
传统定义:设在一个变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值和它对应,那么就说y是x的函数,x叫做自变量,自变量x的取值范围叫做函数的定义域。
现代定义:设A、B是非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数,在集合B中都有唯一确定的数f(x)和它对应,那么就称映射?:A→B为从集合A到集合B的一个函数,记作:y=f(x),x∈A,其中x叫自变量,自变量x的取值范围A叫做函数的定义域。
设计意图:
函数和三角函数是一般和特殊的关系,是共性和个性的关系,学生已经学习了函数的概念,因此对三角函数的学习就是一个从一般到特殊的演绎的过程,也是以具体函数丰富函数概念的过程。教学经验表明:学生对函数两种定义的记忆是有一定困难的,容易遗忘,此处让学生对函数概念进行回想再认,目的在于明确函数概念的本质,为演绎学习任意角三角函数概念作好知识和认知准备。
(情景2)我们在初中通过锐角三角形的边角关系,学习了锐角的正弦、余弦、正切等三个三角函数。请回想:这三个三角函数分别是怎样规定的?
学生口述后再投影展示,教师再根据投影进行强调:
设计意图:
学生在初中学习了锐角的三角函数概念,现在学习任意角的三角函数,又是一种推广和拓展的过程(类似于从有理数到实数的扩展)。温故知新,要让学生体会知识的产生、发展过程,就要从源头上开始,从学生现有认知状况开始,对锐角三角函数的复习就必不可少。
(二)引伸铺垫、创设情景
(情景3)我们已经把锐角推广到了任意角,锐角的三角函数概念也能推广到任意角吗?试试看,可以独立思考和探索,也可以互相讨论!
留时间让学生独立思考或自由讨论,教师参与讨论或巡回对学困生作启发引导。
能推广吗?怎样推广?针对刚才的问题点名让学生回答。用角的对边、临边、斜边比值的说法显然是受到阻碍了,由于4.1节已经以直角坐标系为工具来研究任意角了,学生一般会想到(否则教师进行提示)继续用直角坐标系来研究任意角的三角函数。
设计意图:
从学生现有知识水平和认知能力出发,创设问题情景,让学生产生认知冲突,进行必要的启发,将学生思维引上自主探索、合作交流的"再创造"征程。
教师对学生回答情况进行点评后布置任务情景:请同学们用直角坐标系重新研究锐角三角函数定义!
师生共做(学生口述,教师板书图形和比值):
把锐角α安装(如何安装?角的顶点与原点重合,角的始边与x轴非负半轴重合)在直角坐标系中,在角α终边上任取一点P,作Pm⊥x轴于m,构造一个RtΔomP,则∠moP=α(锐角),设P(x,y)(x>0、y>0),α的临边om=x、对边mP=y,斜边长|oP∣=r.
根据锐角三角函数定义用x、y、r列出锐角α的正弦、余弦、正切三个比值,并补充对应列出三个倒数比值:
设计意图:
此处做法简单,思想重要。为了顺利实现推广,可以构建中间桥梁或公共载体,使之既与初中的定义一致,又能自然地迁移到任意角的情形。由于前一节已经以直角坐标系为工具来研究任意角了,学生自然能想到仍然以直角坐标系为工具来研究任意角的三角函数。初中以直角三角形边角关系来定义锐角三角函数,现在要用坐标系来研究,探索的结论既要满足任意角的情形,又要包容初中锐角三角函数定义。这是一个认识的飞跃,是理解任意角三角函数概念的关键之一,也是数学发现的重要思想和方法,属于策略性知识,能够形成迁移能力,为学生在以后学习中对某些知识进行推广拓展奠定了基础(譬如从平面向量到空间向量的扩展,从实数到复数的扩展等)。
(情景4)各个比值与角之间有怎样的关系?比值是角的函数吗?
追问:锐角α大小发生变化时,比值会改变吗?
先让学生想象思考,作出主观判断,再用几何画板动画演示,同时作好解释说明:保持r不变,让P绕原点o旋转即α在锐角范围内变化,六个比值随之变化的直观形象。结论是:比值随α的变化而变化。
引导学生观察图3,联系相似三角形知识,
探索发现:
对于锐角α的每一个确定值,六个比值都是
确定的,不会随P在终边上的移动而变化。
得出结论(强调):当α为锐角时,六个比值随α的变化而变化;但对于锐角α的每一个确定值,六个比值都是确定的,不会随P在终边上的移动而变化。所以,六个比值分别是以角α为自变量、以比值为函数值的函数。
设计意图:
初中学生对函数理解较肤浅,这里在学生思维的最近发展区进一步研究初中学过的锐角三角函数,在思维上更上了一个层次,扣准函数概念的内涵,突出变量之间的依赖关系或对应关系,是从函数知识演绎到三角函数知识的主要依据,是准确理解三角函数概念的关键,也是在认知上把三角函数知识纳入函数知识结构的关键。这样做能够使学生有效地增强函数观念。
(三)分析归纳、自主定义
(情境5)能将锐角的比值情形推广到任意角α吗?
水到渠成,师生共同进行探索和推广:
对于一个任意角α,它的终边所在位置包括下列两类共八种情形(投影展示并作分析):
终边分别在四个象限的情形:终边分别在四个半轴上的情形:
;
(指出:不画出角的方向,表明角具有任意性)
怎样刻画任意角的三角函数呢?研究它的六个比值:
(板书)设α是一个任意角,在α终边上除原点外任意取一点P(x,y),P与原点o之间的距离记作r(r=>0),列出六个比值:
α=kππ/2时,x=0,比值y/x、r/x无意义;
α=kπ时,y=0,比值x/y、r/y无意义。
追问:α大小发生变化时,比值会改变吗?
先让学生想象思考,作出主观判断,再用几何画板动画演示,同时作好解释说明:使r保持不变,P绕原点o逆时针、顺时针旋转即角α变化,六个比值随之改变的直观形象。结论是:各比值随α的变化而变化。
再引导学生利用相似三角形知识,探索发现:对于任意角α的每一个确定值,六个比值都是确定的,不会随P在终边上的移动而变化。
综上得到(强调):当角α变化时,六个比值随之变化;对于确定的角α,六个比值(如果存在的话)都不会随P在角α终边上的改变而改变,六个比值是确定的(对应的多值性即诱导公式一留到下节课分析)。
因此,六个比值分别是以角α为自变量、以比值为函数值的函数。
根据历史上的规定,对比值进行命名,指出英文记法和读法,记作(承前作复合板书):
=sinα(正弦)=cosα(余弦)=tanα(正切)
=cscα(余割)=sec(正弦)=cotα(余切)
教师强调:sinα表示sin与α的乘积吗?不是,sinα是函数记号,是一个整体,相当于函数记号f(x)。其它几个三角函数也如此
投影显示图六,指导学生分析其对应关系,进一步体会其函数内涵:
(图六)
指导学生识记六个比值及函数名称。
教师指出:正弦、余弦、正切、余切、正割、余割六个函数统称为三角函数,三角函数有非常丰富的知识和思想方法,我们以后主要学习正弦、余弦、正切三个函数的相关知识和方法,对于余切、正割、余割,只要同学们了解它们的定义就够了(遵循大纲要求)。
引导学生进一步分析理解:
已知角的集合与实数集之间可以建立一一对应关系,对于每一个确定的实数,把它看成一个弧度数,就对应着唯一的一个角,从而分别对应着六个唯一的三角函数值。因此,(板书)三角函数可以看成是以实数为自变量的函数,这将为以后的应用带来很多方便。
设计意图:
把角的终边分别在四个象限、四条半轴上的情形全作出来,有利于对任意性的全面把握。明确比值存在与否的条件,为确定函数定义域作准备。动画演示比值与角之间的依赖性与确定性关系,深化理解三角函数内涵。引导学生在理解的基础上自主地对三角函数作出明确定义,是本节课的中心任务。由于学生刚学弧度制,对弧度制的理解有待于在以后的学习应用中逐步感悟,因此部分学生对"三角函数可以看成是以实数为自变量的函数"的理解有半信半疑之感,有待通过后续的应用加深理解。
(四)探索定义域
(情景6)(1)函数概念的三要素是什么?
函数三要素:对应法则、定义域、值域。
正弦函数sinα的对应法则是什么?
正弦函数sinα的对应法则,实质上就是sinα的定义:对α的每一个确定的值,有唯一确定的比值y/r与之对应,即α→y/r=sinα。
(2)布置任务情景:什么是三角函数的定义域?请求出六个三角函数的定义域,填写下表:
三角函数
sinα
cosα
tanα
cotα
cscα
secα
定义域
引导学生自主探索:
如果没有特别说明,那么使解析式有意义的自变量的取值范围叫做函数的定义域,三角函数的定义域自然是指:使比值有意义的角α的取值范围。
关于sinα=y/r、cosα=x/r,对于任意角α(弧度数),r>0,y/r、x/r恒有意义,定义域都是实数集R.
对于tanα=y/x,α=kππ/2时x=0,y/x无意义,tanα的定义域是:{α|α∈R,且α≠kππ/2}。.。.。.。.。.
教师指出:sinα、cosα、tanα的定义域必须紧扣三角函数定义在理解的基础上记熟,cotα、cscα、secα的定义域不要求记忆。
(关于值域,到后面再学习)。
设计意图:
定义域是函数三要素之一,研究函数必须明确定义域。指导学生根据定义自主探索确定三角函数定义域,有利于在理解的基础上记住它、应用它,也增进对三角函数概念的掌握。
(五)符号判断、形象识记
(情景7)能判断三角函数值的正、负吗?试试看!
引导学生紧紧抓住三角函数定义来分析,r>0,三角函数值的符号决定于x、y值的正负,根据终边所在位置总结出形象的识记口诀:
(同好得正、异号得负)
sinα=y/r:上正下负横为0cosα=x/r:左负右正纵为0tanα=y/x:交叉正负
设计意图:
判断三角函数值的正负符号,是本章教材的一项重要的知识、技能要求。要引导学生抓住定义、数形结合判断和记忆三角函数值的正负符号,并总结出形象的识记口诀,这也是理解和记忆的关键。
(六)练习巩固、理解记忆
1、自学例1:已知角α的终边经过点P(2,-3),求α的六个三角函数值。
要求:读完题目,思考:计算什么?需要准备什么?闭目心算,对照解答,模仿书面表达格式,巩固定义。
课堂练习:
p19题1:已知角α的终边经过点P(-3,-1),求α的六个三角函数值。
要求心算,并提问中下学生检验,--------
点评:角α终边上有无穷多个点,根据三角函数的定义,只要知道α终边上任意一个点的坐标,就可以计算这个角的三角函数值(或判断其无意义)。
补充例题:已知角α的终边经过点P(x,-3),cosα=4/5,求α的其它五个三角函数值。
师生探索:已知y=-3,要求其它五个三角函数值,须知r=?,x=?。根据定义得=(方程思想),x>0,解得x=4,从而--------.解答略。
2、自学例2:求下列各角的六个三角函数值:(1)0;(2)π/2;(3)3π/2.
提问,据反馈信息作点评、修正。
师生探索:紧扣三角函数定义求解,首先要在终边上取定一点。终边在哪儿呢?取定哪一点呢?任意点、还是特殊点?要灵活,只要能够算出三角函数值,都可以。
取特殊点能使计算更简明。课堂练习:p19题2.(改编)填表:
角α(角度)
0°
90°
180°
270°
360°
角α(弧度)
sinα
cosα
tanα
处理:要求取点用定义求解,针对计算过程提问、点评,理解巩固定义。
强调:终边在坐标轴上的角叫轴线角,如0、π/2、π、3π/2等,今后经常用到轴线角的三角函数值,要结合三角函数定义记熟这些值。
设计意图:
及时安排自学例题、自做教材练习题,一般性与特殊性相结合,进行适量的变式练习,以巩固和加深对三角函数概念的理解,通过课堂积极主动的练习活动进行思维训练,把"培养学生分析解决问题的能力"贯穿在每一节课的课堂教学始终。
(七)回顾小结、建构网络
要求全体学生根据教师所提问题进行总结识记,提问检查并强调:
1.你是怎样把锐角三角函数定义推广到任意角的?或者说任意角三角函数具体是怎样定义的?(建立直角坐标系,使角的顶点与坐标原点重合,---,在终边上任意取定一点P,---)
2.你如何判断和记忆正弦、余弦、正切函数的定义域?(根据定义,------)
3.你如何记忆正弦、余弦、正切函数值的符号?(根据定义,想象坐标位置,-----)
设计意图:
遗忘的规律是先快后慢,回顾再现是记忆的重要途径,在课堂内及时总结识记主要内容是上策。此处以问题形式让学生自己归纳识记本节课的主体内容,抓住要害,人人参与,及时建构知识网络,优化知识结构,培养认知能力。
(八)布置课外作业
1.书面作业:习题4.3第3、4、5题。
2.认真阅读p22"阅读材料:三角函数与欧拉",了解欧拉的生平和贡献,特别学习他对科学的挚着精神和坚忍不拔的顽强毅力!有兴趣的同学可以上网查阅欧拉的相关情况。
教学设计说明
一、对本节教材的理解
三角函数是描述周期运动现象的重要的数学模型,有非常广泛的应用。
星星之火,可以燎原。
直角三角形简单朴素的边角关系,以直角坐标系为工具进行自然地推广而得到简明的任意角的三角函数定义,紧紧扣住三角函数定义这个宝贵的源泉,自然地导出三角函数线、定义域、符号判断、值域、同角三角函数关系、多组诱导公式、多组变换公式、辅助角公式、图象和性质,本章教材就是这些内容的具体安排。定义直接用于解析几何(如直线斜率公式、极坐标、部分曲线的参数方程等),定义还是直接解决某些问题的工具,三角函数知识是物理学、高等数学、测量学、天文学的重要基础。
三角函数定义必然是学好全章内容的关键,如果学生掌握不好,将直接影响到后续内容的学习,由三角函数定义的基础性和应用的广泛性决定了本节教材的重点就是定义本身。
二、教学法加工
数学教材通常用抽象概括的形式化的数学书面语言阐述其知识和方法,教师只有通过教学法加工,始终贯彻"以学生的发展为本"的科学教育观,"将数学的学术形态转化为教育形态"(张奠宙语),引导学生积极主动地进行思考活动,直接参与体验数学知识产生发展的背景、过程,返璞归真,揭示本质,体会其中的思想和方法,学生只有这样才能真正理解掌握数学知识和方法,有效地发展智力、培养能力。
在本节教材中,三角函数定义是重点,三角函数线是难点,为了较好地突出重点和突破难点,分散重点和难点,同时兼顾例题、课堂练习的协调匹配,将不按教材顺序来进行教学,第一课时安排三角函数的定义(突出重点)、定义域、符号判断、例题1、2及p19课堂练习1、2、3,第二课时安排三角函数线、p15练习(突破难点)、诱导公式一及课本例题3、4和其它练习。本课例属第一课时。
教学经验表明,三角函数定义"简单易记",学生很容易轻视它,不少学生机械记忆、一知半解。本课例坚持"教师主导、学生主体"的原则,采用"启发探索、讲练结合"的常规教学方法,在学生的最近发展区围绕学生的学习目标设计了一系列符合学生认知规律的程序,通过多媒体辅助教学动画演示比值与角之间的依赖关系,拓展思维活动时空,力求使学生全员主动参与,积极思考,体会定义产生、发展的过程,通过思维过程来理解知识、培养能力。
将六个比值放在一起来研究,同时给出六个三角函数的定义,能够增强对比感和整体感,至于大纲对两组函数掌握与了解的不同要求,在下一步的教学中注意区分就行了。
教学中关于符号sinα、cosα、tanα的出场安排,教材首先对比值取名并给出英文记法,再研究它们与α的函数关系;另外可以先研究六个比值与α之间的函数关系,然后再对六个比值取名给出记法。后者更能突出函数内涵,揭示三角函数本质。本课例采用后者组织教学。
三、教学过程分析(见穿插在教案中的设计意图)。
高中数学说课稿 篇6
一、说教材
1、 教材的地位和作用
《集合的概念》是人教版第一章的内容(中职数学)。本节课的主要内容:集合以及集合有关的概念,元素与集合间的关系。初中数学课本中已现了一些数和点的集合,如:自然数的集合、有理数的集合、不等式解的集合等,但学生并不清楚“集合”在数学中的含义,集合是一个基础性的概念,也是也是中职数学的开篇,是我们后续学习的重要工具,如:用集合的语言表示函数的定义域、值域、方程与不等式的解集,曲线上点的集合等。通过本章节的学习,能让学生领会到数学语言的简洁和准确性,帮助学生学会用集合的语言描述客观,发展学生运用数学语言交流的能力。
2、 教学目标
(1)知识目标:a、通过实例了解集合的含义,理解集合以及有关概念;
b、初步体会元素与集合的“属于”关系,掌握元素与集合关系的表示方法。
(2)能力目标:a、让学生感知数学知识与实际生活得密切联系,培养学生解决实际的能力;
b、学会借助实例分析,探究数学问题,发展学生的观察归纳能力。
(3)情感目标:a、通过联系生活,提高学生学习数学的积极性,形成积极的学习态度;
b、通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的理性和严谨。
3、重点和难点
重点:集合的概念,元素与集合的关系。
难点:准确理解集合的概念。
二、学情分析(说学情)
对于中职生来说,学生的数学基础相对薄弱,他们还没具备一定的观察、分析理解、解决实际问题的能力,在运算能力、思维能力等方面参差不齐,学生学好数学的自信心不强,学习积极性不高,有厌学情绪。
三、说教法
针对学生的实际情况,采用探究式教学法进行教学。首先从学生较熟悉的实例出发,提高学生的注意力和激发学生的学习兴趣。在创设情境认知策略上给予适当的点拨和引导,引导学生主动思、交流、讨论,提出问题。在此基础上教师层层深入,启发学生积极思维,逐步提升学生的数学学习能力。集合概念的形成遵循由感性到理性,由具体到抽象,便于学生的理解和掌握。
四、学习指导(说学法)
教学的矛盾主要方面是学生的学,学是中心,会学是目的,因此在教学中要不断指导学生学会学习。根据数学的特点这节课主要是教学生动脑思考、多训练、勤钻研的研讨,这样做增加了学生主动参与的机会,增强了参与的意识,教学生获取知识的途径,思考问题的方法,使学生成为教学的主体,进而才能达到预期的教学目的和效果。
五、教学过程
1、引入新课:
a、创设情境,揭示本课主题,同时对集合的整体性有个初步的感性认识。
b、介绍集合论的创始者康托尔
2、究竟什么是集合?(实例探究)切合学生现有的认知水平, 以学生熟悉的事物(物体),以实际生活为背景进行探究, 为本课教学创造出一种自然和谐的氛围,充分调动学生的学习热情接待探究过程学生积极思考、交流、作答,教师针对学生的回答启发,引导学生寻找实例中的共同特征,培养学生观察,总结能力范围由具体到抽象,由感性到理性,为下面水到渠成的介绍集合概念做好铺垫。
3、集合的概念,本课的重点。结合探究中的实例,让学生说出集合和元素各是什么?知识的呈现由抽象到具体进一步熟悉元素与集合的概念,让学生分清实际问题中的集合和元素为后面学习两者间的关系做好铺垫。
教师在这一环节做好学习指导,确定的对象组成的整体叫集合,如果对象不确定,就不能确定为集合(举例)加深对概念的理解。
4、 熟悉巩固集合的概念通过例题,练习、帮助学生进一步熟悉和理解集合的概念。
5、 集合的符号记法,为本节重点做好铺垫。
6、 从实例入行手,探索元素和集合的关系,学生能用文字语言描述,如何用数学语言描述,给出元素与集合关系符号表示,在这个环节教师适当引导学生积极主动参与到知识逐步形成过程,便于学生理解和掌握,落实本课的重点,学习指导:⑴集合元素的确定。⑵理解两符号的含义。
7、 思考交流本课的重要环节在课堂上给学生提供充分的活动时间和空间。通过自由举例,能深化概念。同时还能提升学生的分析能力表达自己见解的能力。
8、 从所举的例子中抽象出数集的概念,并给出常见数集的记法。
9、 学生练习:通过练习,识记常见数集的记法,同时进一步巩固元素与集合间的关系。
10、知识的实际应用:
问题不难,落实课本能力目标,培养学生运用数学的意识和能力初步培养学生应用集合的眼光观看世界。
11、课堂小节
以学生小节为主教师帮助为辅,巩固所学知识,帮助学生认识到要学会梳理所学内容,要学会总结反思,使学生的认识进一步升华,培养学生的鬼纳总结能力。
六、评价
教学评价的及时能有效调动课堂气氛,感染学生的情绪,对课堂教学发挥着积极作用,教学过程遵重学生之间的差异培养学生应用集合的眼光看研究对象,注重过程评价与多元评价将教学评价贯穿于本堂课的每个教学环节。
七、教学反思
1、 通过现实生活中的实例,从特殊到一般,在具体感知基础上得出集合的描述概念,便于学生理解接受。
2、 启发探究教学,营造学生的学习氛围,培养学生自主学习,合作交流的能力。
八、板书设计
高中数学说课稿 篇7
各位老师:
大家好!
我叫***,来自**。我说课的题目是《古典概型》,内容选自于高中教材新课程人教A版必修3第三章第二节,课时安排为两个课时,本节课内容为第一课时。下面我将从教材分析、教学目标分析、教法与学法分析、教学过程分析四大方面来阐述我对这节课的分析和设计:
一、教材分析
1.教材所处的地位和作用
古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位。它承接着前面学过的随机事件的概率及其性质,又是以后学习条件概率的基础,起到承前启后的作用。
2、教学的重点和难点
重点:理解古典概型及其概率计算公式。
难点:古典概型的判断及把一些实际问题转化成古典概型。
二、教学目标分析
1.知识与技能目标
(1)通过试验理解基本事件的概念和特点
(2)在数学建模的过程中,抽离出古典概型的两个基本特征,推导出古典概型下的概率的计算公式。
2、过程与方法:
经历公式的推导过程,体验由特殊到一般的数学思想方法。
3、情感态度与价值观:
(1)用具有现实意义的实例,激发学生的学习兴趣,培养学生勇于探索,善于发现的创新思想。
(2)让学生掌握"理论来源于实践,并把理论应用于实践"的辨证思想。
三、教法与学法分析
1、教法分析:根据本节课的特点,采用引导发现和归纳概括相结合的教学方法,通过提出问题、思考问题、解决问题等教学过程,观察对比、概括归纳古典概型的概念及其概率公式,再通过具体问题的提出和解决,来激发学生的学习兴趣,调动学生的主体能动性,让每一个学生充分地参与到学习活动中来。
2、学法分析:学生在教师创设的问题情景中,通过观察、类比、思考、探究、概括、归纳和动手尝试相结合,体现了学生的主体地位,培养了学生由具体到抽象,由特殊到一般的数学思维能力,形成了实事求是的科学态度。
㈠创设情景、引入新课
在课前,教师布置任务,以小组为单位,完成下面两个模拟试验:
试验一:抛掷一枚质地均匀的硬币,分别记录"正面朝上"和"反面朝上"的次数,要求每个数学小组至少完成20次(最好是整十数),最后由代表汇总;
试验二:抛掷一枚质地均匀的骰子,分别记录"1点"、"2点"、"3点"、"4点"、"5点"和"6点"的次数,要求每个数学小组至少完成60次(最好是整十数),最后由代表汇总。
在课上,学生展示模拟试验的操作方法和试验结果,并与同学交流活动感受,教师最后汇总方法、结果和感受,并提出两个问题。
1.用模拟试验的方法来求某一随机事件的概率好不好?为什么?
不好,要求出某一随机事件的概率,需要进行大量的试验,并且求出来的结果是频率,而不是概率。
2.根据以前的学习,上述两个模拟试验的每个结果之间都有什么特点?]
「设计意图」通过课前的模拟实验,让学生感受与他人合作的重要性,培养学生运用数学语言的能力。随着新问题的提出,激发了学生的求知欲望,通过观察对比,培养了学生发现问题的能力。
㈡思考交流、形成概念
学生观察对比得出两个模拟试验的相同点和不同点,教师给出基本事件的概念,并对相关特点加以说明,加深对新概念的理解。
[基本事件有如下的两个特点:
(1)任何两个基本事件是互斥的;
(2)任何事件(除不可能事件)都可以表示成基本事件的和。]
「设计意图」让学生从问题的相同点和不同点中找出研究对象的对立统一面,这能培养学生分析问题的能力,同时也教会学生运用对立统一的辩证唯物主义观点来分析问题的一种方法。教师的注解可以使学生更好的把握问题的关键。
例1从字母a、b、c、d中任意取出两个不同字母的试验中,有哪些基本事件?
先让学生尝试着列出所有的基本事件,教师再讲解用树状图列举问题的优点。
「设计意图」将数形结合和分类讨论的思想渗透到具体问题中来。由于没有学习排列组合,因此用列举法列举基本事件的个数,不仅能让学生直观的感受到对象的总数,而且还能使学生在列举的时候作到不重不漏。解决了求古典概型中基本事件总数这一难点
观察对比,发现两个模拟试验和例1的共同特点:
让学生先观察对比,找出两个模拟试验和例1的共同特点,再概括总结得到的结论,教师最后补充说明。
[经概括总结后得到:
(1)试验中所有可能出现的基本事件只有有限个;(有限性)
(2)每个基本事件出现的可能性相等。(等可能性)
我们将具有这两个特点的概率模型称为古典概率概型,简称古典概型。
「设计意图」培养运用从具体到抽象、从特殊到一般的辩证唯物主义观点分析问题的能力,充分体现了数学的化归思想。启发诱导的同时,训练了学生观察和概括归纳的能力。通过列出相同和不同点,能让学生很好的理解古典概型。
㈢观察分析、推导方程
问题思考:在古典概型下,基本事件出现的概率是多少?随机事件出现的概率如何计算?
教师提出问题,引导学生类比分析两个模拟试验和例1的概率,先通过用概率加法公式求出随机事件的概率,再对比概率结果,发现其中的联系,最后概括总结得出古典概型计算任何事件的概率计算公式:
「设计意图」鼓励学生运用观察类比和从具体到抽象、从特殊到一般的辩证唯物主义方法来分析问题,同时让学生感受数学化归思想的优越性和这一做法的合理性,突出了古典概型的概率计算公式这一重点。
提问:
(1)在例1的实验中,出现字母"d"的概率是多少?
(2)在使用古典概型的概率公式时,应该注意什么?
「设计意图」教师提问,学生回答,深化对古典概型的概率计算公式的理解,也抓住了解决古典概型的概率计算的关键。
㈣例题分析、推广应用
例2单选题是标准化考试中常用的题型,一般是从A,B,c,D四个选项中选择一个正确答案。如果考生掌握了考差的内容,他可以选择唯一正确的答案。假设考生不会做,他随机的选择一个答案,问他答对的概率是多少?
学生先思考再回答,教师对学生没有注意到的关键点加以说明。
「设计意图」让学生明确决概率的计算问题的关键是:先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。巩固学生对已学知识的掌握。
例3同时掷两个骰子,计算:
(1)一共有多少种不同的结果?
(2)其中向上的点数之和是5的结果有多少种?
(3)向上的点数之和是5的概率是多少?
先给出问题,再让学生完成,然后引导学生分析问题,发现解答中存在的问题。引导学生用列表来列举试验中的基本事件的总数。
「设计意图」利用列表数形结合和分类讨论,既能形象直观地列出基本事件的总数,又能做到列举的不重不漏。深化巩固对古典概型及其概率计算公式的理解。培养学生运用数形结合的思想,提高发现问题、分析问题、解决问题的能力,增强学生数学思维情趣,形成学习数学知识的积极态度。
㈤探究思想、巩固深化
问题思考:为什么要把两个骰子标上记号?如果不标记号会出现什么情况?你能解释其中的原因吗?
要求学生观察对比两种结果,找出问题产生的原因。
「设计意图」通过观察对比,发现两种结果不同的根本原因是--研究的问题是否满足古典概型,从而再次突出了古典概型这一教学重点,体现了学生的主体地位,逐渐养成自主探究能力。
㈥总结概括、加深理解
1、基本事件的特点
2、古典概型的特点
3、古典概型的概率计算公式
学生小结归纳,不足的地方老师补充说明。
「设计意图」使学生对本节课的知识有一个系统全面的认识,并把学过的相关知识有机地串联起来,便于记忆和应用,也进一步升华了这节课所要表达的本质思想,让学生的认知更上一层。
㈦布置作业
课本练习1、2、3
「设计意图」进一步让学生掌握古典概型及其概率公式,并能够学以致用,加深对本节课的理解。