《高一数学知识点总结梳理最新(推荐29篇)》
高一数学知识点总结梳理最新(精选29篇)
高一数学知识点总结梳理最新 篇1
反比例函数
形如y=k/x(k为常数且k≠0)的函数,叫做反比例函数。
自变量x的取值范围是不等于0的一切实数。
反比例函数图像性质:
反比例函数的图像为双曲线。
由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。
另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。
如图,上面给出了k分别为正和负(2和-2)时的函数图像。
当K>0时,反比例函数图像经过一,三象限,是减函数
当K<0时,反比例函数图像经过二,四象限,是增函数
反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。
知识点:
1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。
2.对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右平移一个单位。(加一个数时向左平移,减一个数时向右平移)
高一数学知识点总结梳理最新 篇2
空间几何体表面积体积公式:
1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)
2、圆锥体:表面积:πR2+πR[(h2+R2)的]体积:πR2h/3(r为圆锥体低圆半径,h为其高,
3、a-边长,S=6a2,V=a3
4、长方体a-长,b-宽,c-高S=2(ab+ac+bc)V=abc
5、棱柱S-h-高V=Sh
6、棱锥S-h-高V=Sh/3
7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3
8、S1-上底面积,S2-下底面积,S0-中h-高,V=h(S1+S2+4S0)/6
9、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h
10、空心圆柱R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)
11、r-底半径h-高V=πr^2h/3
12、r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/313、球r-半径d-直径V=4/3πr^3=πd^3/6
14、球缺h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/3
15、球台r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/6
16、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/4
17、桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)
高一数学知识点总结梳理最新 篇3
圆的方程定义:
圆的标准方程(x—a)2+(y—b)2=r2中,有三个参数a、b、r,即圆心坐标为(a,b),只要求出a、b、r,这时圆的方程就被确定,因此确定圆方程,须三个独立条件,其中圆心坐标是圆的定位条件,半径是圆的定形条件。
直线和圆的位置关系:
1、直线和圆位置关系的判定方法一是方程的观点,即把圆的方程和直线的方程联立成方程组,利用判别式Δ来讨论位置关系。
①Δ>0,直线和圆相交。②Δ=0,直线和圆相切。③Δ0,则a可以是任意实数;
排除了为0这种可能,即对于x0的所有实数,q不能是偶数;
排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。
总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;
如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。
在x大于0时,函数的值域总是大于0的实数。
在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。
而只有a为正数,0才进入函数的值域。
由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况。
可以看到:
(1)所有的图形都通过(1,1)这点。
(2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。
(3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。
(4)当a小于0时,a越小,图形倾斜程度越大。
(5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。
(6)显然幂函数。
解题方法:换元法
解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这种方法叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。
换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。
它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。
练习题:
1、若f(x)=x2—x+b,且f(log2a)=b,log2[f(a)]=2(a≠1)。
(1)求f(log2x)的最小值及对应的x值;
(2)x取何值时,f(log2x)>f(1)且log2[f(x)]
2、已知函数f(x)=3x+k(k为常数),A(—2k,2)是函数y=f—1(x)图象上的点。
(1)求实数k的值及函数f—1(x)的解析式;
(2)将y=f—1(x)的图象按向量a=(3,0)平移,得到函数y=g(x)的图象,若2f—1(x+—3)—g(x)≥1恒成立,试求实数m的取值范围。
高一数学知识点总结梳理最新 篇4
平面向量
向量:既有大小,又有方向的量.
数量:只有大小,没有方向的量.
有向线段的三要素:起点、方向、长度.
零向量:长度为的向量.
单位向量:长度等于个单位的向量.
相等向量:长度相等且方向相同的向量
&向量的运算
加法运算
AB+BC=AC,这种计算法则叫做向量加法的三角形法则。
已知两个从同一点O出发的两个向量OA、OB,以OA、OB为邻边作平行四边形OACB,则以O为起点的对角线OC就是向量OA、OB的和,这种计算法则叫做向量加法的平行四边形法则。
对于零向量和任意向量a,有:0+a=a+0=a。
|a+b|≤|a|+|b|。
向量的加法满足所有的加法运算定律。
减法运算
与a长度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量
(1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。
数乘运算
实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa,|λa|=|λ||a|,当λ>0时,λa的方向和a的方向相同,当λ<0时,λa的方向和a的方向相反,当λ=0时,λa=0。
设λ、μ是实数,那么:(1)(λμ)a=λ(μa)(2)(λμ)a=λaμa(3)λ(a±b)=λa±λb(4)(-λ)a=-(λa)=λ(-a)。
向量的加法运算、减法运算、数乘运算统称线性运算。
向量的数量积
已知两个非零向量a、b,那么|a||b|cosθ叫做a与b的数量积或内积,记作a?b,θ是a与b的夹角,|a|cosθ(|b|cosθ)叫做向量a在b方向上(b在a方向上)的投影。零向量与任意向量的数量积为0。
a?b的几何意义:数量积a?b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积。
两个向量的数量积等于它们对应坐标的乘积的和。
高一数学知识点总结梳理最新 篇5
幂函数的性质:
对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:
首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:
排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;
排除了为0这种可能,即对于x0的所有实数,q不能是偶数;
排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。
总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;
如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。
在x大于0时,函数的值域总是大于0的实数。
在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。
而只有a为正数,0才进入函数的值域。
由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况.
可以看到:
(1)所有的图形都通过(1,1)这点。
(2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。
(3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。
(4)当a小于0时,a越小,图形倾斜程度越大。
(5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。
(6)显然幂函数无界。
解题方法:换元法
解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这种方法叫换元法.换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。
换元法又称辅助元素法、变量代换法.通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来.或者变为熟悉的形式,把复杂的计算和推证简化。
它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。
高一数学知识点总结梳理最新 篇6
一、集合有关概念
1.集合的含义
2.集合的中元素的三个特性:
(1)元素的确定性如:世界上的山
(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}
(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合
3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}
(2)集合的表示方法:列举法与描述法。
注意:常用数集及其记法:
非负整数集(即自然数集)记作:N
正整数集:N_或N+
整数集:Z
有理数集:Q
实数集:R
1)列举法:{a,b,c……}
2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合{xR|x-3>2},{x|x-3>2}
3)语言描述法:例:{不是直角三角形的三角形}
4)Venn图:
4、集合的分类:
(1)有限集含有有限个元素的集合
(2)无限集含有无限个元素的集合
(3)空集不含任何元素的集合例:{x|x2=-5}
二、集合间的基本关系
1.“包含”关系—子集
注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA
2.“相等”关系:A=B(5≥5,且5≤5,则5=5)
实例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等”
即:①任何一个集合是它本身的子集。AíA
②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)
③如果AíB,BíC,那么AíC
④如果AíB同时BíA那么A=B
3.不含任何元素的集合叫做空集,记为Φ
规定:空集是任何集合的子集,空集是任何非空集合的真子集。
4.子集个数:
有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-1个非空子集,含有2n-1个非空真子集
三、集合的运算
运算类型交集并集补集
定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作‘A交B’),即AB={x|xA,且xB}.
由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作‘A并B’),即AB={x|xA,或xB}).
【基本初等函数】
一、指数函数
(一)指数与指数幂的运算
1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_.
当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).
当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。
注意:当是奇数时,当是偶数时,
2.分数指数幂
正数的分数指数幂的意义,规定:
0的正分数指数幂等于0,0的负分数指数幂没有意义
指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.
3.实数指数幂的运算性质
(二)指数函数及其性质
1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R.
注意:指数函数的底数的取值范围,底数不能是负数、零和1.
2、指数函数的图象和性质
【函数的应用】
1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。
2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:
方程有实数根函数的图象与轴有交点函数有零点.
3、函数零点的求法:
求函数的零点:
1(代数法)求方程的实数根;
2(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.
4、二次函数的零点:
二次函数.
1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.
2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.
3)△b>0)或 + =1(a>b>0)(其中,a2=b2+c2)
2.双曲线:- =1(a>0,b>0)或 - =1(a>0,b>0)(其中,c2=a2+b2)
3.抛物线:y2=±2px(p>0),x2=±2py(p>0)
三、圆锥曲线的性质
1.椭圆:+ =1(a>b>0)
(1)范围:|x|≤a,|y|≤b(2)顶点:(±a,0),(0,±b)(3)焦点:(±c,0)(4)离心率:e= ∈(0,1)(5)准线:x=±
2.双曲线:- =1(a>0,b>0)(1)范围:|x|≥a,y∈R(2)顶点:(±a,0)(3)焦点:(±c,0)(4)离心率:e= ∈(1,+∞)(5)准线:x=± (6)渐近线:y=± x
3.抛物线:y2=2px(p>0)(1)范围:x≥0,y∈R(2)顶点:(0,0)(3)焦点:( ,0)(4)离心率:e=1(5)准线:x=-
高一数学知识点总结梳理最新 篇7
立体几何初步
柱、锥、台、球的结构特征
棱柱
定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱。
几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
棱锥
定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等
表示:用各顶点字母,如五棱锥
几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
棱台
定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分。
分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等
表示:用各顶点字母,如五棱台
几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点
圆柱
定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。
几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
圆锥
定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。
几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
圆台
定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分
几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
球体
定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体
几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。
NO.2空间几何体的三视图
定义三视图
定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)
注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;
俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;
侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。
NO.3空间几何体的直观图——斜二测画法
斜二测画法
斜二测画法特点
①原来与x轴平行的线段仍然与x平行且长度不变;
②原来与y轴平行的线段仍然与y平行,长度为原来的一半。
直线与方程
直线的倾斜角
定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α0,则a可以是任意实数;
排除了为0这种可能,即对于x0的所有实数,q不能是偶数;
排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。
高一数学知识点总结梳理最新 篇8
归纳1
1、“包含”关系—子集
注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA
2、“相等”关系(5≥5,且5≤5,则5=5)
实例:设A={x|x2—1=0}B={—1,1}“元素相同”
结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B
①任何一个集合是它本身的子集。AíA
②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)
③如果AíB,BíC,那么AíC
④如果AíB同时BíA那么A=B
3、不含任何元素的集合叫做空集,记为Φ
规定:空集是任何集合的子集,空集是任何非空集合的真子集。
归纳2
形如y=k/x(k为常数且k≠0)的函数,叫做反比例函数。
自变量x的取值范围是不等于0的一切实数。
反比例函数图像性质:
反比例函数的图像为双曲线。
由于反比例函数属于奇函数,有f(—x)=—f(x),图像关于原点对称。
另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。
上面给出了k分别为正和负(2和—2)时的函数图像。
当K>0时,反比例函数图像经过一,三象限,是减函数
当K<0时,反比例函数图像经过二,四象限,是增函数
反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。
知识点:
1、过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。
2、对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右平移一个单位。(加一个数时向左平移,减一个数时向右平移)
归纳3
方程的根与函数的零点
1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。
2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:方程有实数根,函数的图象与坐标轴有交点,函数有零点。
3、函数零点的求法:
(1)(代数法)求方程的实数根;
(2)(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点。
4、二次函数的零点:
(1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点。
(2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点。
(3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点。
归纳3
形如y=k/x(k为常数且k≠0)的函数,叫做反比例函数。
自变量x的取值范围是不等于0的一切实数。
反比例函数图像性质:
反比例函数的图像为双曲线。
由于反比例函数属于奇函数,有f(—x)=—f(x),图像关于原点对称。
另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。
如图,上面给出了k分别为正和负(2和—2)时的函数图像。
当K>0时,反比例函数图像经过一,三象限,是减函数
当K<0时,反比例函数图像经过二,四象限,是增函数
反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。
知识点:
1、过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。
2、对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右平移一个单位。(加一个数时向左平移,减一个数时向右平移)
归纳4
幂函数的性质:
对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:
首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=—k,则x=1/(x^k),显然x≠0,函数的定义域是(—∞,0)∪(0,+∞)、因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:
排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;
排除了为0这种可能,即对于x<0x="">0的所有实数,q不能是偶数;
排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。
总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;
如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。
在x大于0时,函数的值域总是大于0的实数。
在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。
而只有a为正数,0才进入函数的值域。
由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况、
可以看到:
(1)所有的图形都通过(1,1)这点。
(2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。
(3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。
(4)当a小于0时,a越小,图形倾斜程度越大。
(5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。
(6)显然幂函数无界。
解题方法:换元法
解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这种方法叫换元法,换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。
换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。
它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。
高一数学知识点总结梳理最新 篇9
一:集合的含义与表示
1、集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个整体。
把研究对象统称为元素,把一些元素组成的总体叫集合,简称为集。
2、集合的中元素的三个特性:
(1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。
(2)元素的互异性:一个给定集合中的元素是的,不可重复的。
(3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合
3、集合的表示:{……}
(1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}
(2)集合的表示方法:列举法与描述法。
a、列举法:将集合中的元素一一列举出来{a,b,c……}
b、描述法:
①区间法:将集合中元素的公共属性描述出来,写在大括号内表示集合。
{x?R|x—3>2},{x|x—3>2}
②语言描述法:例:{不是直角三角形的三角形}
③Venn图:画出一条封闭的曲线,曲线里面表示集合。
4、集合的分类:
(1)有限集:含有有限个元素的集合
(2)无限集:含有无限个元素的集合
(3)空集:不含任何元素的集合
5、元素与集合的关系:
(1)元素在集合里,则元素属于集合,即:a?A
(2)元素不在集合里,则元素不属于集合,即:a¢A
注意:常用数集及其记法:
非负整数集(即自然数集)记作:N
正整数集N—或N+
整数集Z
有理数集Q
实数集R
6、集合间的基本关系
(1)。“包含”关系(1)—子集
定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集。
高一数学知识点总结梳理最新 篇10
1.函数知识:基本初等函数性质的考查,以导数知识为背景的函数问题;以向量知识为背景的函数问题;从具体函数的考查转向抽象函数考查;从重结果考查转向重过程考查;从熟悉情景的考查转向新颖情景的考查。
2.向量知识:向量具有数与形的双重性,高考中向量试题的命题趋向:考查平面向量的基本概念和运算律;考查平面向量的坐标运算;考查平面向量与几何、三角、代数等学科的综合性问题。
3.不等式知识:突出工具性,淡化独立性,突出解,是不等式命题的新取向。高考中不等式试题的命题趋向:基本的线性规划问题为必考内容,不等式的性质与指数函数、对数函数、三角函数、二交函数等结合起来,考查不等式的性质、最值、函数的单调性等;证明不等式的试题,多以函数、数列、解析几何等知识为背景,在知识网络的交汇处命题,综合性强,能力要求高;解不等式的试题,往往与公式、根式和参数的讨论联系在一起。考查学生的等价转化能力和分类讨论能力;以当前经济、社会生产、生活为背景与不等式综合的应用题仍将是高考的热点,主要考查学生阅读理解能力以及分析问题、解决问题的能力。
4.立体几何知识:20__年已经变得简单,20__年难度依然不大,基本的三视图的考查难点不大,以及球与几何体的组合体,涉及切,接的问题,线面垂直、平行位置关系的考查,已经线面角,面面角和几何体的体积计算等问题,都是重点考查内容。
5.解析几何知识:小题主要涉及圆锥曲线方程,和直线与圆的位置关系,以及圆锥曲线几何性质的考查,极坐标下的解析几何知识,解答题主要考查直线和圆的知识,直线与圆锥曲线的知识,涉及圆锥曲线方程,直线与圆锥曲线方程联立,定点,定值,范围的考查,考试的难度降低。
6.导数知识:导数的考查还是以理科19题,文科20题的形式给出,从常见函数入手,导数工具作用(切线和单调性)的考查,综合性强,能力要求高;往往与公式、导数往往与参数的讨论联系在一起,考查转化与化归能力,但今年的难点整体偏低。
7.开放型创新题:答案不,或是逻辑推理题,以及解答题中的开放型试题的考查,都是重点,理科13,文科14题。
高一数学知识点总结梳理最新 篇11
集合与元素
一个东西是集合还是元素并不是绝对的,很多情况下是相对的,集合是由元素组成的集合,元素是组成集合的元素。
例如:你所在的班级是一个集合,是由几十个和你同龄的同学组成的集合,你相对于这个班级集合来说,是它的一个元素;
而整个学校又是由许许多多个班级组成的集合,你所在的班级只是其中的一分子,是一个元素。
班级相对于你是集合,相对于学校是元素,参照物不同,得到的结论也不同,可见,是集合还是元素,并不是绝对的。
解集合问题的关键
解集合问题的关键:弄清集合是由哪些元素所构成的,也就是将抽象问题具体化、形象化,将特征性质描述法表示的集合用列举法来表示,或用韦恩图来表示抽象的集合,或用图形来表示集合;比如用数轴来表示集合,或是集合的元素为有序实数对时,可用平面直角坐标系中的图形表示相关的集合等。
高一数学知识点总结梳理最新 篇12
两个平面的位置关系
(1)两个平面互相平行的定义:空间两平面没有公共点
(2)两个平面的位置关系:
两个平面平行-----没有公共点;两个平面相交-----有一条公共直线。
a、平行
两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。
两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行。b、相交
二面角
(1)半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。
(2)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。二面角的取值范围为[0°,180°]
(3)二面角的棱:这一条直线叫做二面角的棱。
(4)二面角的面:这两个半平面叫做二面角的面。
(5)二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。
(6)直二面角:平面角是直角的二面角叫做直二面角。
两平面垂直
两平面垂直的定义:两平面相交,如果所成的角是直二面角,就说这两个平面互相垂直。记为⊥
两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直
两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平
二面角求法:直接法(作出平面角)、三垂线定理及逆定理、面积射影定理、空间向量之法向量法(注意求出的角与所需要求的角之间的等补关系)。
高一数学知识点总结梳理最新 篇13
一、集合有关概念
1. 集合的含义
2. 集合的中元素的三个特性:
(1) 元素的确定性,
(2) 元素的互异性,
(3) 元素的无序性,
3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
(1) 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}
(2) 集合的表示方法:列举法与描述法。
? 注意:常用数集及其记法:
非负整数集(即自然数集) 记作:N
正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R
1) 列举法:{a,b,c……}
2) 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x?R| x-3>2} ,{x| x-3>2}
3) 语言描述法:例:{不是直角三角形的三角形}
4) Venn图:
4、集合的分类:
(1) 有限集 含有有限个元素的集合
(2) 无限集 含有无限个元素的集合
(3) 空集 不含任何元素的集合 例:{x|x2=-5}
二、集合间的基本关系
1.“包含”关系—子集
注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A
2.“相等”关系:A=B (5≥5,且5≤5,则5=5)
实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”
即:① 任何一个集合是它本身的子集。A?A
②真子集:如果A?B,且A? B那就说集合A是集合B的真子集,记作A B(或B A)
③如果 A?B, B?C ,那么 A?C
④ 如果A?B 同时 B?A 那么A=B
3. 不含任何元素的集合叫做空集,记为Φ
规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
? 有n个元素的集合,含有2n个子集,2n-1个真子集
三、集合的运算
运算类型 交 集 并 集 补 集
定 义 由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’),即A B={x|x A,且x B}.
由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作‘A并B’),即A B ={x|x A,或x B}).
设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)
二、函数的有关概念
1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.
注意:
1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。
求函数的定义域时列不等式组的主要依据是:
(1)分式的分母不等于零;
(2)偶次方根的被开方数不小于零;
(3)对数式的真数必须大于零;
(4)指数、对数式的底必须大于零且不等于1.
(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.
(6)指数为零底不可以等于零,
(7)实际问题中的函数的定义域还要保证实际问题有意义.
相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)
2.值域 : 先考虑其定义域
(1)观察法
(2)配方法
(3)代换法
3. 函数图象知识归纳
(1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 .
(2) 画法
A、 描点法:
B、 图象变换法
常用变换方法有三种
1) 平移变换
2) 伸缩变换
3) 对称变换
4.区间的概念
(1)区间的分类:开区间、闭区间、半开半闭区间
(2)无穷区间
(3)区间的数轴表示.
5.映射
一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A B为从集合A到集合B的一个映射。记作f:A→B
6.分段函数
(1)在定义域的不同部分上有不同的解析表达式的函数。
(2)各部分的自变量的取值情况.
(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.
补充:复合函数
如果y=f(u)(u∈M),u=g(x)(x∈A),则 y=f[g(x)]=F(x)(x∈A) 称为f、g的复合函数。
二.函数的性质
1.函数的单调性(局部性质)
(1)增函数
设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1
如果对于区间D上的任意两个自变量的值x1,x2,当x1f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.
注意:函数的单调性是函数的局部性质;
(2) 图象的特点
如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.
(3).函数单调区间与单调性的判定方法
(A) 定义法:
○1 任取x1,x2∈D,且x1
○2 作差f(x1)-f(x2);
○3 变形(通常是因式分解和配方);
○4 定号(即判断差f(x1)-f(x2)的正负);
○5 下结论(指出函数f(x)在给定的区间D上的单调性).
(B)图象法(从图象上看升降)
(C)复合函数的单调性
复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”
注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集.
8.函数的奇偶性(整体性质)
(1)偶函数
一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.
(2).奇函数
一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.
(3)具有奇偶性的函数的图象的特征
偶函数的图象关于y轴对称;奇函数的图象关于原点对称.
利用定义判断函数奇偶性的步骤:
○1首先确定函数的定义域,并判断其是否关于原点对称;
○2确定f(-x)与f(x)的关系;
○3作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.
(2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1来判定;
(3)利用定理,或借助函数的图象判定 .
9、函数的解析表达式
(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.
(2)求函数的解析式的主要方法有:
1) 凑配法
2) 待定系数法
3) 换元法
4) 消参法
10.函数最大(小)值(定义见课本p36页)
○1 利用二次函数的性质(配方法)求函数的最大(小)值
○2 利用图象求函数的最大(小)值
○3 利用函数单调性的判断函数的最大(小)值:
如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);
如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);
高一数学知识点总结梳理最新 篇14
集合的含义
集合的中元素的三个特性:
元素的确定性如:世界上的山
元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}
元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合
3。集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}
集合的表示方法:列举法与描述法。
注意:常用数集及其记法:
非负整数集(即自然数集)记作:N
正整数集NN+整数集Z有理数集Q实数集R
列举法:{a,b,c……}
描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x(R|x—3>2},{x|x—3>2}
语言描述法:例:{不是直角三角形的三角形}
Venn图:
4、集合的分类:
有限集含有有限个元素的集合
无限集含有无限个元素的集合
空集不含任何元素的集合例:{x|x2=—5}
高一数学知识点总结梳理最新 篇15
(1)直线的倾斜角
定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角.特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度.因此,倾斜角的取值范围是0°≤α<180°
(2)直线的斜率
①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率.直线的斜率常用k表示.即.斜率反映直线与轴的倾斜程度.
当时,;当时,;当时,不存在.
②过两点的直线的斜率公式:
注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;
(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;
(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到.
(3)直线方程
①点斜式:直线斜率k,且过点
注意:当直线的斜率为0°时,k=0,直线的方程是y=y1.
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1.
②斜截式:,直线斜率为k,直线在y轴上的截距为b
③两点式:直线两点,
④截矩式:
其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为.
⑤一般式:(A,B不全为0)
注意:各式的适用范围特殊的方程如:
平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);
(5)直线系方程:即具有某一共同性质的直线
(一)平行直线系
平行于已知直线(是不全为0的常数)的直线系:(C为常数)
(二)垂直直线系
垂直于已知直线(是不全为0的常数)的直线系:(C为常数)
(三)过定点的直线系
(ⅰ)斜率为k的直线系:,直线过定点;
(ⅱ)过两条直线,的交点的直线系方程为
(为参数),其中直线不在直线系中.
(6)两直线平行与垂直
注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否.
(7)两条直线的交点
相交
交点坐标即方程组的一组解.
方程组无解;方程组有无数解与重合
(8)两点间距离公式:设是平面直角坐标系中的两个点
(9)点到直线距离公式:一点到直线的距离
(10)两平行直线距离公式
在任一直线上任取一点,再转化为点到直线的距离进行求解.
高一数学知识点总结梳理最新 篇16
【直线与方程】
(1)直线的倾斜角
定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°
(2)直线的斜率
①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。当时,。当时,;当时,不存在。
②过两点的直线的斜率公式:
注意下面四点:
(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;
(2)k与P1、P2的顺序无关;
(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;
(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
高一数学知识点总结梳理最新 篇17
集合的运算
运算类型交 集并 集补 集
定义域 R定义域 R
值域>0值域>0
在R上单调递增在R上单调递减
非奇非偶函数非奇非偶函数
函数图象都过定点(0,1)函数图象都过定点(0,1)
注意:利用函数的单调性,结合图象还可以看出:
(1)在[a,b]上, 值域是 或 ;
(2)若 ,则 ; 取遍所有正数当且仅当 ;
(3)对于指数函数 ,总有 ;
二、对数函数
(一)对数
1.对数的概念:
一般地,如果 ,那么数 叫做以 为底 的对数,记作: ( — 底数, — 真数, — 对数式)
说明:○1 注意底数的限制 ,且 ;
○2 ;
○3 注意对数的书写格式.
两个重要对数:
○1 常用对数:以10为底的对数 ;
○2 自然对数:以无理数 为底的对数的对数 .
指数式与对数式的互化
幂值 真数
= N = b
底数
指数 对数
(二)对数的运算性质
如果 ,且 , , ,那么:
○1 + ;
○2 - ;
○3 .
注意:换底公式: ( ,且 ; ,且 ; ).
利用换底公式推导下面的结论:(1) ;(2) .
(3)、重要的公式 ①、负数与零没有对数; ②、 , ③、对数恒等式
(二)对数函数
1、对数函数的概念:函数 ,且 叫做对数函数,其中 是自变量,函数的定义域是(0,+∞).
注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。如: , 都不是对数函数,而只能称其为对数型函数.
○2 对数函数对底数的限制: ,且 .
2、对数函数的性质:
a>102} ,{x| x-3>2}
3) 语言描述法:例:{不是直角三角形的三角形}
4) Venn图:
4、集合的分类:
(1) 有限集 含有有限个元素的集合
(2) 无限集 含有无限个元素的集合
(3) 空集 不含任何元素的集合 例:{x|x2=-5}
二、集合间的基本关系
1.“包含”关系—子集
注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A
2.“相等”关系:A=B (5≥5,且5≤5,则5=5)
实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”
即:① 任何一个集合是它本身的子集。A?A
②真子集:如果A?B,且A? B那就说集合A是集合B的真子集,记作A B(或B A)
③如果 A?B, B?C ,那么 A?C
④ 如果A?B 同时 B?A 那么A=B
3. 不含任何元素的集合叫做空集,记为Φ
规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
? 有n个元素的集合,含有2n个子集,2n-1个真子集
三、集合的运算
运算类型 交 集 并 集 补 集
定 义 由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’),即A B={x|x A,且x B}.
由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作‘A并B’),即A B ={x|x A,或x B}).
设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)
二、函数的有关概念
1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.
注意:
1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。
求函数的定义域时列不等式组的主要依据是:
(1)分式的分母不等于零;
(2)偶次方根的被开方数不小于零;
(3)对数式的真数必须大于零;
(4)指数、对数式的底必须大于零且不等于1.
(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.
(6)指数为零底不可以等于零,
(7)实际问题中的函数的定义域还要保证实际问题有意义.
相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)
2.值域 : 先考虑其定义域
(1)观察法
(2)配方法
(3)代换法
3. 函数图象知识归纳
(1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 .
(2) 画法
A、 描点法:
B、 图象变换法
常用变换方法有三种
1) 平移变换
2) 伸缩变换
3) 对称变换
4.区间的概念
(1)区间的分类:开区间、闭区间、半开半闭区间
(2)无穷区间
(3)区间的数轴表示.
5.映射
一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A B为从集合A到集合B的一个映射。记作f:A→B
6.分段函数
(1)在定义域的不同部分上有不同的解析表达式的函数。
(2)各部分的自变量的取值情况.
(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.
补充:复合函数
如果y=f(u)(u∈M),u=g(x)(x∈A),则 y=f[g(x)]=F(x)(x∈A) 称为f、g的复合函数。
二.函数的性质
1.函数的单调性(局部性质)
(1)增函数
设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1
如果对于区间D上的任意两个自变量的值x1,x2,当x1f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.
注意:函数的单调性是函数的局部性质;
(2) 图象的特点
如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.
(3).函数单调区间与单调性的判定方法
(A) 定义法:
○1 任取x1,x2∈D,且x1
○2 作差f(x1)-f(x2);
○3 变形(通常是因式分解和配方);
○4 定号(即判断差f(x1)-f(x2)的正负);
○5 下结论(指出函数f(x)在给定的区间D上的单调性).
(B)图象法(从图象上看升降)
(C)复合函数的单调性
复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”
注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集.
8.函数的奇偶性(整体性质)
(1)偶函数
一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.
(2).奇函数
一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.
(3)具有奇偶性的函数的图象的特征
偶函数的图象关于y轴对称;奇函数的图象关于原点对称.
利用定义判断函数奇偶性的步骤:
○1首先确定函数的定义域,并判断其是否关于原点对称;
○2确定f(-x)与f(x)的关系;
○3作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.
(2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1来判定;
(3)利用定理,或借助函数的图象判定 .
9、函数的解析表达式
(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.
(2)求函数的解析式的主要方法有:
1) 凑配法
2) 待定系数法
3) 换元法
4) 消参法
10.函数最大(小)值(定义见课本p36页)
○1 利用二次函数的性质(配方法)求函数的最大(小)值
○2 利用图象求函数的最大(小)值
○3 利用函数单调性的判断函数的最大(小)值:
如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);
如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);
高一数学知识点总结梳理最新 篇18
函数图象知识归纳
(1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的函数C,叫做函数y=f(x),(x∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.
(2)画法
A、描点法:
B、图象变换法
常用变换方法有三种
1)平移变换
2)伸缩变换
3)对称变换
4.高中数学函数区间的概念
(1)函数区间的分类:开区间、闭区间、半开半闭区间
(2)无穷区间
5.映射
一般地,设A、B是两个非空的函数,如果按某一个确定的对应法则f,使对于函数A中的任意一个元素x,在函数B中都有确定的元素y与之对应,那么就称对应f:AB为从函数A到函数B的一个映射。记作“f(对应关系):A(原象)B(象)”
对于映射f:A→B来说,则应满足:
(1)函数A中的每一个元素,在函数B中都有象,并且象是的;
(2)函数A中不同的元素,在函数B中对应的象可以是同一个;
(3)不要求函数B中的每一个元素在函数A中都有原象。
6.高中数学函数之分段函数
(1)在定义域的不同部分上有不同的解析表达式的函数。
(2)各部分的自变量的取值情况.
(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.
补充:复合函数
如果y=f(u)(u∈M),u=g(x)(x∈A),则y=f[g(x)]=F(x)(x∈A)称为f、g的复合函数。
高一数学知识点总结梳理最新 篇19
【立体几何初步】
1、柱、锥、台、球的结构特征
(1)棱柱:
定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱。
几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥
定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等
表示:用各顶点字母,如五棱锥
几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
(3)棱台:
定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分。
分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等
表示:用各顶点字母,如五棱台
几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点
(4)圆柱:
定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。
几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
(5)圆锥:
定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。
几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
(6)圆台:
定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分
几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
(7)球体:
定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体
几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。
2、空间几何体的三视图
定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)
注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;
俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;
侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。
3、空间几何体的直观图——斜二测画法
斜二测画法特点:
①原来与x轴平行的线段仍然与x平行且长度不变;
②原来与y轴平行的线段仍然与y平行,长度为原来的一半。
高一数学知识点总结梳理最新 篇20
数学是利用符号语言研究数量、结构、变化以及空间模型等概念的一门学科。小编准备了高一数学必修1期末考知识点,希望你喜欢。
一、集合有关概念
1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素.
2、集合的中元素的三个特性:
1.元素的确定性; 2.元素的互异性; 3.元素的无序性
说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素.
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素.
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样.
(4)集合元素的三个特性使集合本身具有了确定性和整体性.
3、集合的表示:{ } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
1. 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}
2.集合的表示方法:列举法与描述法.
注意啊:常用数集及其记法:
非负整数集(即自然数集)记作:N
正整数集 N*或N+ 整数集Z 有理数集Q 实数集R
关于属于的概念
集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作 aA ,相反,a不属于集合A 记作 a?A
列举法:把集合中的元素一一列举出来,然后用一个大括号括上.
描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法.用确定的条件表示某些对象是否属于这个集合的方法.
①语言描述法:例:{不是直角三角形的三角形}
②数学式子描述法:例:不等式x-32的解集是{x?R| x-32}或{x| x-32}
4、集合的分类:
1.有限集 含有有限个元素的集合
2.无限集 含有无限个元素的集合
3.空集 不含任何元素的集合 例:{x|x2=-5}
二、集合间的基本关系
1.包含关系子集
注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合.
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A
2.相等关系(55,且55,则5=5)
实例:设 A={x|x2-1=0} B={-1,1} 元素相同
结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B
① 任何一个集合是它本身的子集.AA
②真子集:如果AB,且A1 B那就说集合A是集合B的真子集,记作A B(或B A)
③如果 AB, BC ,那么 AC
④ 如果AB 同时 BA 那么A=B
3. 不含任何元素的集合叫做空集,记为
规定: 空集是任何集合的子集, 空集是任何非空集合的真子集.
三、集合的运算
1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.
记作AB(读作A交B),即AB={x|xA,且xB}.
2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作A并B),即AB={x|xA,或xB}.
3、交集与并集的性质:AA = A, A=, AB = BA,AA = A,
A= A ,AB = BA.
4、全集与补集
(1)补集:设S是一个集合,A是S的一个子集(即 ),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)
(2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集.通常用U来表示.
(3)性质:⑴CU(C UA)=A ⑵(C UA) ⑶(CUA)A=U
高一数学知识点总结梳理最新 篇21
1、二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的'图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:
解析式
顶点坐标
对称轴
y=ax^2
(0,0)
x=0
y=a(x-h)^2
(h,0)
x=h
y=a(x-h)^2+k
(h,k)
x=h
y=ax^2+bx+c
(-b/2a,[4ac-b^2]/4a)
x=-b/2a
当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,
当h<0时,则向左平行移动|h|个单位得到.
当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2+k的图象;
当h>0,k<0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;
当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象;
当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;
因此,研究抛物线y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.
2、抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).
3、抛物线y=ax^2+bx+c(a≠0),若a>0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的增大而增大.若a<0,当x≤-b/2a时,y随x的增大而增大;当x≥-b/2a时,y随x的增大而减小.
4、抛物线y=ax^2+bx+c的图象与坐标轴的交点:
(1)图象与y轴一定相交,交点坐标为(0,c);
(2)当△=b^2-4ac>0,图象与x轴交于两点A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
(a≠0)的两根.这两点间的距离AB=|x?-x?|
当△=0.图象与x轴只有一个交点;
当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.
5、抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x=-b/2a时,y最小(大)值=(4ac-b^2)/4a.
顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.
6、用待定系数法求二次函数的解析式
(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:
y=ax^2+bx+c(a≠0).
(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0).
(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x?)(x-x?)(a≠0).
7、二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.
高一数学知识点总结梳理最新 篇22
知识点1
一、集合有关概念
1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
2、集合的中元素的三个特性:
1、元素的确定性;
2、元素的互异性;
3、元素的无序性
说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。
(4)集合元素的三个特性使集合本身具有了确定性和整体性。
3、集合的表示:{…}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
1、用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}
2、集合的表示方法:列举法与描述法。
注意啊:常用数集及其记法:
非负整数集(即自然数集)记作:N
正整数集N或N+整数集Z有理数集Q实数集R
关于“属于”的概念
集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作a?A
列举法:把集合中的元素一一列举出来,然后用一个大括号括上。
描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。
①语言描述法:例:{不是直角三角形的三角形}
②数学式子描述法:例:不等式x—3>2的解集是{x?R|x—3>2}或{x|x—3>2}
4、集合的分类:
1、有限集含有有限个元素的集合
2、无限集含有无限个元素的集合
3、空集不含任何元素的集合例:{x|x2=—5}
知识点2
I、定义与定义表达式
一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c
(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a0时,抛物线向上开口;当a0时,抛物线向上开口;当a0),对称轴在y轴左;
当a与b异号时(即ab0时,抛物线与x轴有2个交点。
Δ=b’2—4ac=0时,抛物线与x轴有1个交点。
Δ=b’2—4ac0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点。
(2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点。
(3)△0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,
当h0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2+k的图象;
当h>0,k0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象;
当h0时,开口向上,当a0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的增大而增大.若a0,图象与x轴交于两点A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
(a≠0)的两根.这两点间的距离AB=|x?-x?|
当△=0.图象与x轴只有一个交点;
当△0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a0(a2} ,{x| x-3>2}
3) 语言描述法:例:{不是直角三角形的三角形}
4) Venn图:
4、集合的分类:
(1) 有限集 含有有限个元素的集合
(2) 无限集 含有无限个元素的集合
(3) 空集 不含任何元素的集合 例:{x|x2=-5}
二、集合间的基本关系
1.“包含”关系—子集
注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A
2.“相等”关系:A=B (5≥5,且5≤5,则5=5)
实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”
即:① 任何一个集合是它本身的子集。A?A
②真子集:如果A?B,且A? B那就说集合A是集合B的真子集,记作A B(或B A)
③如果 A?B, B?C ,那么 A?C
④ 如果A?B 同时 B?A 那么A=B
3. 不含任何元素的集合叫做空集,记为Φ
规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
? 有n个元素的集合,含有2n个子集,2n-1个真子集
三、集合的运算
运算类型 交 集 并 集 补 集
定 义 由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’),即A B={x|x A,且x B}.
由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作‘A并B’),即A B ={x|x A,或x B}).
设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)
二、函数的有关概念
1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.
注意:
1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。
求函数的定义域时列不等式组的主要依据是:
(1)分式的分母不等于零;
(2)偶次方根的被开方数不小于零;
(3)对数式的真数必须大于零;
(4)指数、对数式的底必须大于零且不等于1.
(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.
(6)指数为零底不可以等于零,
(7)实际问题中的函数的定义域还要保证实际问题有意义.
相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)
2.值域 : 先考虑其定义域
(1)观察法
(2)配方法
(3)代换法
3. 函数图象知识归纳
(1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 .
(2) 画法
A、 描点法:
B、 图象变换法
常用变换方法有三种
1) 平移变换
2) 伸缩变换
3) 对称变换
4.区间的概念
(1)区间的分类:开区间、闭区间、半开半闭区间
(2)无穷区间
(3)区间的数轴表示.
5.映射
一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A B为从集合A到集合B的一个映射。记作f:A→B
6.分段函数
(1)在定义域的不同部分上有不同的解析表达式的函数。
(2)各部分的自变量的取值情况.
(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.
补充:复合函数
如果y=f(u)(u∈M),u=g(x)(x∈A),则 y=f[g(x)]=F(x)(x∈A) 称为f、g的复合函数。
二.函数的性质
1.函数的单调性(局部性质)
(1)增函数
设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1
如果对于区间D上的任意两个自变量的值x1,x2,当x1f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.
注意:函数的单调性是函数的局部性质;
(2) 图象的特点
如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.
(3).函数单调区间与单调性的判定方法
(A) 定义法:
○1 任取x1,x2∈D,且x1
○2 作差f(x1)-f(x2);
○3 变形(通常是因式分解和配方);
○4 定号(即判断差f(x1)-f(x2)的正负);
○5 下结论(指出函数f(x)在给定的区间D上的单调性).
(B)图象法(从图象上看升降)
(C)复合函数的单调性
复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”
注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集.
8.函数的奇偶性(整体性质)
(1)偶函数
一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.
(2).奇函数
一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.
(3)具有奇偶性的函数的图象的特征
偶函数的图象关于y轴对称;奇函数的图象关于原点对称.
利用定义判断函数奇偶性的步骤:
○1首先确定函数的定义域,并判断其是否关于原点对称;
○2确定f(-x)与f(x)的关系;
○3作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.
(2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1来判定;
(3)利用定理,或借助函数的图象判定 .
9、函数的解析表达式
(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.
(2)求函数的解析式的主要方法有:
1) 凑配法
2) 待定系数法
3) 换元法
4) 消参法
10.函数最大(小)值(定义见课本p36页)
○1 利用二次函数的性质(配方法)求函数的最大(小)值
○2 利用图象求函数的最大(小)值
○3 利用函数单调性的判断函数的最大(小)值:
如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);
如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);
高一数学知识点总结梳理最新 篇23
这学期我担任高一7、8两个普通班的数学教学工作。深入研究教法,经过一个学期的努力,获取了很多宝贵的教学经验。以下是我在本学期的教学情况总结:
教学就是教与学,两者是相互联系,不可分割的,有教者就必然有学者。学生是被教的主体。因此,了解和分析学生情况,有针对地教对教学成功与否至关重要。一方面,从学生基础来看,学生底子,另一方面,上课比较活跃,上课气氛非常积极,但中等生、差等生占较大的比例,尖子生相对比较少。因此,讲得太深,没有照顾到整体,我备课时也没有注意到这点,因此教学效果不是很理想。从此可以看出,了解及分析学生实际情况,实事求是,具体问题具体分析,做到因材施教,对授课效果有直接影响,这根提高数学高效课堂有很大的关系。这就是教育学中提到的“备教法的同时要备学生”。这一理论在我的教学实践中得到了验证。
教学中,备课是一个必不可少,十分重要的环节,备学生,又要备教法。备课不充分或备得不好,会严重影响课堂气氛和积极性,曾有一位前辈对我说:“备课备不好,倒不如不上课,否则就是白费心机”。我明白到备课的重要性,因此,每天我都花费大量的时间在备课之上,认认真真钻研教材和教法,不满意就不收工。虽然辛苦,但事实证明是值得的。
一堂准备充分的课,会令学生和老师都获益不浅。如果照本宣科地讲授,学生会感到困难和沉闷。为了上好这堂课,我认真研究了教材,找出了重点,难点,准备有针对性地讲。为了令教学生动,不沉闷,我还为此准备了大量的比较感兴趣的事例和教具,授课时就胸有成竹了。
备课充分,能调动学生的积极性,上课效果就好。但同时又要有驾驭课堂的能力,因为学生在课堂上的一举一动都会直接影响课堂教学。因此上课一定要设法令学生投入,不让其分心,这就很讲究方法了。上课内容丰富,现实。教态自然,讲课生动,难易适中照顾全部,就自然能够吸引住学生。所以,老师每天都要有充足的精神,让学生感受到一种自然气氛。这样,授课就事半功倍。回看自己的授课,我感到有点愧疚,因为有时我并不能很好地做到这点。当学生在课堂上无心向学,违反纪律时,我的情绪就受到影响,并且把这带到教学中,让原本正常的讲课受到冲击,发挥不到应有的水平,以致影响教学效果。我以后必须努力克服,研究方法,采取有利方法解决当中困难。
数学是一门工具学科,对学生而言,既熟悉又困难,在这样一种大环境之下,要教好数学,就要让学生喜爱数学,让他们对数学产生兴趣。否则学生对这门学科产生畏难情绪,不愿学,也无法学下去。为此,我采取了一些方法,就是尽量多讲一些笑话和数学典故,让他们更了解数学,更喜欢学习数学。只有激发学生学习数学的乐趣,才能提高同学们的`解题能力,对成绩优秀的同学很有好处。
因为数学的特殊情况,学生在不断学习中,会出现好差两极分化的现象,差生面扩大,会严重影响班内的学习风气。因此,绝对不能忽视。为此,我制定了具体的计划和目标。对这部分同学进行有计划的辅导。数学是语言。困此,除了课堂效果之外,还需要让学生多想,多练。为此,在自修时,我坚持下班了解自修情况,发现问题及时纠正。课后发现学生作业问题也及时解决,及时讲清楚,让学生即时消化。另外,对部分不自觉的同学还采取扎实基础的方式,先打实他们的基础,然后想办法提高他们的能力。
由于经验颇浅,许多地方存在不足,希望在未来的日子里,能在学校领导老师、前辈们的指导下,取得更好成绩。
高一数学知识点总结梳理最新 篇24
一、集合有关概念
1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
2、集合的中元素的三个特性:
1)元素的确定性;
2)元素的互异性;
3)元素的无序性
说明:
(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。
(4)集合元素的三个特性使集合本身具有了确定性和整体性。
3、集合的表示:{…}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
1、用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}
2、集合的表示方法:列举法与描述法。
二、集合间的基本关系
1、“包含”关系—子集
注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA
2、“相等”关系(5≥5,且5≤5,则5=5)
实例:设A={x|x2—1=0}B={—1,1}“元素相同”
结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B
①任何一个集合是它本身的子集。AíA
②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)
③如果AíB,BíC,那么AíC
④如果AíB同时BíA那么A=B
3。不含任何元素的集合叫做空集,记为Φ
规定:空集是任何集合的子集,空集是任何非空集合的真子集。
三、集合的运算
1、交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集。
记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}。
2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}。
3、交集与并集的性质:A∩A=A,A∩φ=φ,A∩B=B∩A,A∪A=A,A∪φ=A,A∪B=B∪A。
高一数学知识点总结梳理最新 篇25
考点一、映射的概念
1、了解对应大千世界的对应共分四类,分别是:一对一多对一一对多多对多
2、映射:设A和B是两个非空集合,如果按照某种对应关系f,对于集合A中的任意一个元素x,在集合B中都存在的一个元素y与之对应,那么,就称对应f:A→B为集合A到集合B的一个映射(mapping).映射是特殊的对应,简称“对一”的对应。包括:一对一多对一
考点二、函数的概念
1、函数:设A和B是两个非空的数集,如果按照某种确定的对应关系f,对于集合A中的任意一个数x,在集合B中都存在确定的数y与之对应,那么,就称对应f:A→B为集合A到集合B的一个函数。记作y=f(x),xA.其中x叫自变量,x的取值范围A叫函数的定义域;与x的值相对应的y的值函数值,函数值的集合叫做函数的值域。函数是特殊的映射,是非空数集A到非空数集B的映射。
2、函数的三要素:定义域、值域、对应关系。这是判断两个函数是否为同一函数的依据。
3、区间的概念:设a,bR,且a
①(a,b)={xa
②(a,+∞)={>a}
③[a,+∞)={≥a}
④(-∞,b)={
考点三、函数的表示方法
1、函数的三种表示方法列表法图象法解析法
2、分段函数:定义域的不同部分,有不同的对应法则的函数。注意两点:
①分段函数是一个函数,不要误认为是几个函数。
②分段函数的定义域是各段定义域的并集,值域是各段值域的并集。
考点四、求定义域的几种情况
①若f(x)是整式,则函数的定义域是实数集R;
②若f(x)是分式,则函数的定义域是使分母不等于0的实数集;
③若f(x)是二次根式,则函数的定义域是使根号内的式子大于或等于0的实数集合;
④若f(x)是对数函数,真数应大于零。
⑤因为零的零次幂没有意义,所以底数和指数不能同时为零。
⑥若f(x)是由几个部分的数学式子构成的,则函数的定义域是使各部分式子都有意义的实数集合;
⑦若f(x)是由实际问题抽象出来的函数,则函数的定义域应符合实际问题
高一数学知识点总结梳理最新 篇26
圆的方程定义:
圆的标准方程(x—a)2+(y—b)2=r2中,有三个参数a、b、r,即圆心坐标为(a,b),只要求出a、b、r,这时圆的方程就被确定,因此确定圆方程,须三个独立条件,其中圆心坐标是圆的定位条件,半径是圆的`定形条件。
直线和圆的位置关系:
1、直线和圆位置关系的判定方法一是方程的观点,即把圆的方程和直线的方程联立成方程组,利用判别式Δ来讨论位置关系。
①Δ>0,直线和圆相交、②Δ=0,直线和圆相切、③Δ0,则a可以是任意实数;
排除了为0这种可能,即对于x0的所有实数,q不能是偶数;
排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。
指数函数
(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。
(2)指数函数的值域为大于0的实数集合。
(3)函数图形都是下凹的。
(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。
(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。
(6)函数总是在某一个方向上无限趋向于X轴,永不相交。
(7)函数总是通过(0,1)这点。
(8)显然指数函数无界。
奇偶性
定义
一般地,对于函数f(x)
(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。
(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。
(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。
(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。
高一数学知识点总结梳理最新 篇27
集合的有关概念
1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素
注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。
②集合中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。
③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件
2)集合的表示方法:常用的有列举法、描述法和图文法
3)集合的分类:有限集,无限集,空集。
4)常用数集:N,Z,Q,R,N
子集、交集、并集、补集、空集、全集等概念
1)子集:若对x∈A都有x∈B,则AB(或AB);
2)真子集:AB且存在x0∈B但x0A;记为AB(或,且)
3)交集:A∩B={x|x∈A且x∈B}
4)并集:A∪B={x|x∈A或x∈B}
5)补集:CUA={x|xA但x∈U}
注意:A,若A≠?,则?A;
若且,则A=B(等集)
集合与元素
掌握有关的术语和符号,特别要注意以下的符号:(1)与、?的区别;(2)与的区别;(3)与的区别。
子集的几个等价关系
①A∩B=AAB;②A∪B=BAB;③ABCuACuB;
④A∩CuB=空集CuAB;⑤CuA∪B=IAB。
交、并集运算的性质
①A∩A=A,A∩?=?,A∩B=B∩A;②A∪A=A,A∪?=A,A∪B=B∪A;
③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;
有限子集的个数:
设集合A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。
练习题:
已知集合M={x|x=m+,m∈Z},N={x|x=,n∈Z},P={x|x=,p∈Z},则M,N,P满足关系
A)M=NPB)MN=PC)MNPD)NPM
分析一:从判断元素的共性与区别入手。
解答一:对于集合M:{x|x=,m∈Z};对于集合N:{x|x=,n∈Z}
对于集合P:{x|x=,p∈Z},由于3(n-1)+1和3p+1都表示被3除余1的数,而6m+1表示被6除余1的数,所以MN=P,故选B。
高一数学知识点总结梳理最新 篇28
I.定义与定义表达式
一般地,自变量_和因变量y之间存在如下关系:y=a_^2+b_+c则称y为_的二次函数。
二次函数表达式的右边通常为二次三项式。
II.二次函数的三种表达式
一般式:y=a_^2+b_+c(a,b,c为常数,a≠0)
顶点式:y=a(_-h)^2+k[抛物线的顶点P(h,k)]
交点式:y=a(_-_?)(_-_?)[仅限于与_轴有交点A(_?,0)和B(_?,0)的抛物线]
注:在3种形式的互相转化中,有如下关系:
h=-b/2a k=(4ac-b^2)/4a _?,_?=(-b±√b^2-4ac)/2a
III.二次函数的图像
在平面直角坐标系中作出二次函数y=_^2的图像,可以看出,二次函数的图像是一条抛物线。
IV.抛物线的性质
1.抛物线是轴对称图形。对称轴为直线_=-b/2a。
对称轴与抛物线的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线_=0)
2.抛物线有一个顶点P,坐标为:P(-b/2a,(4ac-b^2)/4a)当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在_轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;
当a与b异号时(即ab<0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
6.抛物线与_轴交点个数
Δ=b^2-4ac>0时,抛物线与_轴有2个交点。
Δ=b^2-4ac=0时,抛物线与_轴有1个交点。
Δ=b^2-4ac<0时,抛物线与_轴没有交点。
_的取值是虚数(_=-b±√b^2-4ac的值的相反数,乘上虚数i,整个式子除以2a)
V.二次函数与一元二次方程
特别地,二次函数(以下称函数)y=a_^2+b_+c,
当y=0时,二次函数为关于_的一元二次方程(以下称方程),即a_^2+b_+c=0
此时,函数图像与_轴有无交点即方程有无实数根。函数与_轴交点的横坐标即为方程的根。
高一数学知识点总结梳理最新 篇29
【(一)、映射、函数、反函数】
1、对应、映射、函数三个概念既有共性又有区别,映射是一种特殊的对应,而函数又是一种特殊的映射。
2、对于函数的概念,应注意如下几点:
(1)掌握构成函数的三要素,会判断两个函数是否为同一函数。
(2)掌握三种表示法——列表法、解析法、图象法,能根实际问题寻求变量间的函数关系式,特别是会求分段函数的解析式。
(3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的复合函数,其中g(x)为内函数,f(u)为外函数。
3、求函数y=f(x)的反函数的一般步骤:
(1)确定原函数的值域,也就是反函数的定义域;
(2)由y=f(x)的解析式求出x=f—1(y);
(3)将x,y对换,得反函数的习惯表达式y=f—1(x),并注明定义域。
注意①:对于分段函数的反函数,先分别求出在各段上的反函数,然后再合并到一起。
②熟悉的应用,求f—1(x0)的值,合理利用这个结论,可以避免求反函数的过程,从而简化运算。
【(二)、函数的解析式与定义域】
1、函数及其定义域是不可分割的整体,没有定义域的函数是不存在的,因此,要正确地写出函数的解析式,必须是在求出变量间的对应法则的同时,求出函数的定义域。求函数的定义域一般有三种类型:
(1)有时一个函数来自于一个实际问题,这时自变量x有实际意义,求定义域要结合实际意义考虑;
(2)已知一个函数的解析式求其定义域,只要使解析式有意义即可。如:
①分式的分母不得为零;
②偶次方根的被开方数不小于零;
③对数函数的真数必须大于零;
④指数函数和对数函数的底数必须大于零且不等于1;
⑤三角函数中的正切函数y=tanx(x∈R,且k∈Z),余切函数y=cotx(x∈R,x≠kπ,k∈Z)等。
应注意,一个函数的解析式由几部分组成时,定义域为各部分有意义的自变量取值的公共部分(即交集)。
(3)已知一个函数的定义域,求另一个函数的定义域,主要考虑定义域的深刻含义即可。
已知f(x)的定义域是[a,b],求f[g(x)]的定义域是指满足a≤g(x)≤b的x的取值范围,而已知f[g(x)]的定义域[a,b]指的是x∈[a,b],此时f(x)的定义域,即g(x)的值域。
2、求函数的解析式一般有四种情况
(1)根据某实际问题需建立一种函数关系时,必须引入合适的变量,根据数学的有关知识寻求函数的解析式。
(2)有时题设给出函数特征,求函数的解析式,可采用待定系数法。比如函数是一次函数,可设f(x)=ax+b(a≠0),其中a,b为待定系数,根据题设条件,列出方程组,求出a,b即可。
(3)若题设给出复合函数f[g(x)]的表达式时,可用换元法求函数f(x)的表达式,这时必须求出g(x)的值域,这相当于求函数的定义域。
(4)若已知f(x)满足某个等式,这个等式除f(x)是未知量外,还出现其他未知量(如f(—x),等),必须根据已知等式,再构造其他等式组成方程组,利用解方程组法求出f(x)的表达式。
【(三)、函数的值域与最值】
1、函数的值域取决于定义域和对应法则,不论采用何种方法求函数值域都应先考虑其定义域,求函数值域常用方法如下:
(1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域。
(2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元。
(3)反函数法:利用函数f(x)与其反函数f—1(x)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得。
(4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法。
(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧。
(6)判别式法:把y=f(x)变形为关于x的一元二次方程,利用“△≥0”求值域。其题型特征是解析式中含有根式或分式。
(7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域。
(8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域。
2、求函数的最值与值域的区别和联系
求函数最值的常用方法和求函数值域的方法基本上是相同的,事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值。因此求函数的最值与值域,其实质是相同的,只是提问的角度不同,因而答题的方式就有所相异。
如函数的值域是(0,16],值是16,无最小值。再如函数的值域是(—∞,—2]∪[2,+∞),但此函数无值和最小值,只有在改变函数定义域后,如x>0时,函数的最小值为2。可见定义域对函数的值域或最值的影响。
3、函数的最值在实际问题中的应用
函数的最值的应用主要体现在用函数知识求解实际问题上,从文字表述上常常表现为“工程造价最低”,“利润”或“面积(体积)(最小)”等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值。
【(四)、函数的奇偶性】
1、函数的奇偶性的定义:对于函数f(x),如果对于函数定义域内的任意一个x,都有f(—x)=—f(x)(或f(—x)=f(x)),那么函数f(x)就叫做奇函数(或偶函数)。
正确理解奇函数和偶函数的定义,要注意两点:(1)定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要不充分条件;(2)f(x)=—f(x)或f(—x)=f(x)是定义域上的恒等式。(奇偶性是函数定义域上的整体性质)。
2、奇偶函数的定义是判断函数奇偶性的主要依据。为了便于判断函数的奇偶性,有时需要将函数化简或应用定义的等价形式:
注意如下结论的运用:
(1)不论f(x)是奇函数还是偶函数,f(|x|)总是偶函数;
(2)f(x)、g(x)分别是定义域D1、D2上的奇函数,那么在D1∩D2上,f(x)+g(x)是奇函数,f(x)·g(x)是偶函数,类似地有“奇±奇=奇”“奇×奇=偶”,“偶±偶=偶”“偶×偶=偶”“奇×偶=奇”;
(3)奇偶函数的复合函数的奇偶性通常是偶函数;
(4)奇函数的导函数是偶函数,偶函数的导函数是奇函数。
3、有关奇偶性的几个性质及结论
(1)一个函数为奇函数的充要条件是它的图象关于原点对称;一个函数为偶函数的充要条件是它的图象关于y轴对称。
(2)如要函数的定义域关于原点对称且函数值恒为零,那么它既是奇函数又是偶函数。
(3)若奇函数f(x)在x=0处有意义,则f(0)=0成立。
(4)若f(x)是具有奇偶性的区间单调函数,则奇(偶)函数在正负对称区间上的单调性是相同(反)的。
(5)若f(x)的定义域关于原点对称,则F(x)=f(x)+f(—x)是偶函数,G(x)=f(x)—f(—x)是奇函数。
(6)奇偶性的推广
函数y=f(x)对定义域内的任一x都有f(a+x)=f(a—x),则y=f(x)的图象关于直线x=a对称,即y=f(a+x)为偶函数。函数y=f(x)对定义域内的任—x都有f(a+x)=—f(a—x),则y=f(x)的图象关于点(a,0)成中心对称图形,即y=f(a+x)为奇函数。
【(五)、函数的单调性】
1、单调函数
对于函数f(x)定义在某区间[a,b]上任意两点x1,x2,当x1>x2时,都有不等式f(x1)>(或<)f(x2)成立,称f(x)在[a,b]上单调递增(或递减);增函数或减函数统称为单调函数。
对于函数单调性的定义的理解,要注意以下三点:
(1)单调性是与“区间”紧密相关的概念。一个函数在不同的区间上可以有不同的单调性。
(2)单调性是函数在某一区间上的“整体”性质,因此定义中的x1,x2具有任意性,不能用特殊值代替。
(3)单调区间是定义域的子集,讨论单调性必须在定义域范围内。
(4)注意定义的两种等价形式:
设x1、x2∈[a,b],那么:
①在[a、b]上是增函数;
在[a、b]上是减函数。
②在[a、b]上是增函数。
在[a、b]上是减函数。
需要指出的是:①的几何意义是:增(减)函数图象上任意两点(x1,f(x1))、(x2,f(x2))连线的斜率都大于(或小于)零。
(5)由于定义都是充要性命题,因此由f(x)是增(减)函数,且(或x1>x2),这说明单调性使得自变量间的不等关系和函数值之间的不等关系可以“正逆互推”。
5、复合函数y=f[g(x)]的单调性
若u=g(x)在区间[a,b]上的单调性,与y=f(u)在[g(a),g(b)](或g(b),g(a))上的单调性相同,则复合函数y=f[g(x)]在[a,b]上单调递增;否则,单调递减。简称“同增、异减”。
在研究函数的单调性时,常需要先将函数化简,转化为讨论一些熟知函数的单调性。因此,掌握并熟记一次函数、二次函数、指数函数、对数函数的单调性,将大大缩短我们的判断过程。
6、证明函数的单调性的方法
(1)依定义进行证明。其步骤为:①任取x1、x2∈M且x1(或<)f(x2);③根据定义,得出结论。
(2)设函数y=f(x)在某区间内可导。
如果f′(x)>0,则f(x)为增函数;如果f′(x)<0,则f(x)为减函数。
【(六)、函数的图象】
函数的图象是函数的直观体现,应加强对作图、识图、用图能力的培养,培养用数形结合的思想方法解决问题的意识。
求作图象的函数表达式
与f(x)的关系
由f(x)的图象需经过的变换
y=f(x)±b(b>0)
沿y轴向平移b个单位
y=f(x±a)(a>0)
沿x轴向平移a个单位
y=—f(x)
作关于x轴的对称图形
y=f(|x|)
右不动、左右关于y轴对称
y=|f(x)|
上不动、下沿x轴翻折
y=f—1(x)
作关于直线y=x的对称图形
y=f(ax)(a>0)
横坐标缩短到原来的,纵坐标不变
y=af(x)
纵坐标伸长到原来的|a|倍,横坐标不变
y=f(—x)
作关于y轴对称的图形
【例】定义在实数集上的函数f(x),对任意x,y∈R,有f(x+y)+f(x—y)=2f(x)·f(y),且f(0)≠0。
①求证:f(0)=1;
②求证:y=f(x)是偶函数;
③若存在常数c,使求证对任意x∈R,有f(x+c)=—f(x)成立;试问函数f(x)是不是周期函数,如果是,找出它的一个周期;如果不是,请说明理由。
思路分析:我们把没有给出解析式的函数称之为抽象函数,解决这类问题一般采用赋值法。
解答:①令x=y=0,则有2f(0)=2f2(0),因为f(0)≠0,所以f(0)=1。
②令x=0,则有f(x)+f(—y)=2f(0)·f(y)=2f(y),所以f(—y)=f(y),这说明f(x)为偶函数。
③分别用(c>0)替换x、y,有f(x+c)+f(x)=
所以,所以f(x+c)=—f(x)。
两边应用中的结论,得f(x+2c)=—f(x+c)=—[—f(x)]=f(x),
所以f(x)是周期函数,2c就是它的一个周期。