首页 > 学习方法 > 初中学习方法 > 初二学习方法 > 八年级数学 > 初二数学北师大版知识点总结正文

《初二数学北师大版知识点总结》

时间:

学习从来无捷径,循序渐进登高峰。如果说学习一定有捷径,那只能是勤奋,因为努力永远不会骗人。学习需要勤奋,做任何事情都需要勤奋。下面是小编给大家整理的一些初二数学知识点,希望对大家有所帮助。

初二下学期数学知识点

分式

一.概念:如果A、B表示两个整式,并且B中含有字母,那么式子A/B叫做分式(fraction)。

二.基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。

三计算法则:乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。

分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

四.分式乘方要把分子、分母分别乘方。

a^-n=1/a^n(a≠0)这就是说,a^-n(a≠0)是a^n的倒数。

五.分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。

第十七章反比例函数

一.概念形如y=k/x(k为常数,k≠0)的函数称为反比例函数(inverseproportionalfunction)。

二.性质:反比例函数的图像属于双曲线(hyperbola)。

当k>0时,双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小;

当k<0时,双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大。

第十八章勾股定理

一.概念勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a^2+b^2=c^2

勾股定理逆定理:如果三角形三边长a,b,c满足a^2+b^2=c^2,那么这个三角形是直角三角形。

二.命题:经过证明被确认正确的命题叫做定理(theorem)。

我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理)

第十九章四边形

一.平行四边形的概念:有两组对边分别平行的四边形叫做平行四边形。

二.平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等。平行四边形的对角线互相平分。

三.平行四边形的判定:

1.两组对边分别相等的四边形是平行四边形;

2.对角线互相平分的四边形是平行四边形;

3.两组对角分别相等的四边形是平行四边形;

4.一组对边平行且相等的四边形是平行四边形。

5.三角形的中位线平行于三角形的第三边,且等于第三边的一半。

四.直角三角形的性质:直角三角形斜边上的中线等于斜边的一半。

五.矩形的性质:矩形的四个角都是直角;矩形的对角线平分且相等。

初二数学课本上学期知识点

第二章实数

定义:任何有限小数或无限循环小数都是有理数。无限不循环小数叫做无理数

(有理数总可以用有限小数或无限循环小数表示)

一般地,如果一个正数x的平方等于a,那么这个正数x就叫做a的算术平方根。

特别地,我们规定0的算术平方根是0。

一般地,如果一个数x的平方等于a,那么这个数x就叫做a的平方根(也叫二次方根)

一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根。

求一个数a的平方根的运算,叫做开平方,其中a叫做被开方数。

一般地,如果一个数x的立方等于a,那么这个数x就叫做a的立方根(也叫做三次方根)。

正数的立方根是正数;0的立方根是0;负数的立方根是负数。

求一个数a的立方根的运算,叫做开立方,其中a叫做被开方数。

有理数和无理数统称为实数,即实数可以分为有理数和无理数。

每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数。即实数和数轴上的点是一一对应的。

在数轴上,右边的点表示的数比左边的点表示的数大。

数学知识点八年级

概率初步

23.1确定事件和随机事件

1.在一定条件下必定出现的现象叫做必然事件

2.在一定条件下必定不出现的现象叫做不可能事件

3.必然事件和不可能事件统称为确定事件

4.那些在一定条件下可能出现也可能不出现的现象叫做随机时间,也称为不确定事件23.2事件发生的可能性

23.3时间的概率

1.用来表示某事件发生的可能性大小的数叫做这个事件的概率

2.规定用0作为不可能事件的概率;用1作为必然时间的概率

3.事件A的概率我们记作P(A);对于随机事件A,可知0

4.如果一项可以反复进行的试验具有以下特点:

(1)试验的结果是有限个,各种结果可能出现的机会是均等的;

(2)任何两个结果不可能同时出现

那么这样的试验叫做等可能试验

5.一般地,如果一个试验共有n个等可能的结果,事件A包含其中的k个结果,那么事件A的概率P(A)=事件A包含的可能结果数/所有的可能结果总数=k/n

6.列举法、树状图、列表

23.4概率计算举例


初二数学北师大版知识点总结相关文章