首页 > 学习方法 > 初中学习方法 > 初一学习方法 > 七年级数学 > 2021年初三上册期末数学复习资料正文

《2021年初三上册期末数学复习资料》

时间:

当一个人进入社会之后,还要在工作中不断学习新的知识和技能,这时候,一个人学习效率的高低则会影响他(或她)的工作成绩,继而影响他的事业和前途。那么你们知道关于初三上册期末数学复习资料内容还有哪些呢?下面是小编为大家准备2021年初三上册期末数学复习资料大全,欢迎参阅。

初三上册期末数学复习资料章一

1.通过猜想,验证,计算得到的定理:

(1)全等三角形的判定定理:

(2)与等腰三角形的相关结论:

①等腰三角形两底角相等(等边对等角)

②等腰三角形顶角的平分线,底边上的中线,底边上的高互相重合(三线合一)

③有两个角相等的三角形是等腰三角形(等角对等边)

(3)与等边三角形相关的结论:

①有一个角是60°得等腰三角形是等边三角形

②三个角都相等的三角形是等边三角形

③三条边都相等的三角形是等边三角形

(4)与直角三角形相关的结论:

①勾股定理:在直角三角形中,两直角边的平方和等于斜边的平方

②勾股定理逆定理:在一个三角形中两直角边的平方和等于斜边的平方,那么这个三角形一定是直角三角形

③HL定理:斜边和一条直角边对应相等的两个三角形全等

④在三角形中30°角所对的直角边等于斜边的一半

2.两条特殊线

(1)线段的垂直平分线

①线段的垂直平分线上的点到线段两边的距离相等

互为逆定理{

②到一条线段两个端点距离相等的点在这条线段的垂直平分线上

③三角形的三条垂直平分线交于一点,并且这一点到这三个顶点的距离相等

(2)角平分线

①角平分线上的点到这个角的两边距离相等

互为逆定理{

②在一个角的内部,并且到这个角的两边距离相等的的点,在这个角的角平分线上

3.命题的逆命题及真假

①在两个命题中,如果一个命题的条件与结论是另一个命题的结论与条件,我们就说这两个命题互为逆命题,其中一个是另一个的逆命题

②如果一个定理的逆命题是真命题,那么他也是一个定理,我们称这两个定理为互逆定理

③反正法:从否定命题的结论入手,并把对命题结论的否定作为推理的已知条件,进行正确的逻辑推理,使之得到与已知条件,定理相矛盾,矛盾的原因是假设不成立,所以肯定了命题的结论,使命题获得了证明

初三上册期末数学复习资料章二

1.平行四边形

定义:两组对边分别平行的四边形是平行四边形

性质定理:

(1)两组对边分别相等

(2)平行四边形对角相等

(3)对角线互相平分

判定定理:

(1)两组对边分别相等的四边形是平行四边形

(2)两组对角分别相等的四边形是平行四边形

(3)对角线互相平分的四边形是平行四边形

(4)一组对边平行且相等的四边形是平行四边形

2.等腰梯形

定义:两腰相等的梯形叫等腰梯形

性质定理:

(1)同一底上的两个角相等

(2)等腰梯形的对角线相等

判定定理:

(1)同一底上的两个角相等的梯形是等腰梯形

(2)两条对角线相等的梯形是等腰梯形

定理:夹在两条平行线中间的平行线段相等

3.三角形和梯形的中位线:

(1)三角形的中位线

定义:三角形中任意两边中点的连线,叫三角形的中位线(三角形有三条中位线)

性质定理:三角形的中位线平行且等于第三边的一半

(2)梯形的中位线

定义:梯形两腰中点的连线,叫梯形的中位线,梯形的中位线平行于上底下底

性质定理:梯形的中位线等于上,下底之和的一半

4.矩形→特殊的平行四边形

定理:一个角是直角的平行四边形是矩形

性质定理:

(1)矩形的四个角都是直角

(2)矩形的对角线相等

判定定理:

(1)三个角都是直角的四边形是矩形

(2)对角线相等的平行四边形是矩形

推论:直角三角形的斜边上的中线等于斜边的一半

逆定理:如果一个三角形中,一条边上的中线等于这条边的一半,那么这个三角形是直角三角形

5.菱形→特殊的平行四边形

定义:一组邻边相等的的平行四边形是菱形

性质定理:

(1)菱形的四条边都相等

(2)菱形的对角线互相垂直,并且每一条线平分一组对角

判定定理:

(1)四条边都相等的四边形是菱形

(2)对角线互相垂直的平行四边形是菱形

面积计算:菱形的面积等于其对角线乘积的一半

6正方形→特殊的平行四边形

定义:每一个角都是直角,并且邻边相等

性质定理:

(1)正方形的四条边都相等,四个角都是直角

(2)对角线互相垂直,平分,相等,并且每一条对角线平分一组对角

判定定理:

(1)有一个角是直角的菱形是正方形

(2)一组邻边相等的矩形是正方形

(3)对角线相等的菱形是正方形

(4)对角线互相垂直的矩形是正方形

7.连接四边形各个中点得到

(1)依次连接任意四边形各边中点能得到平行四边形

(2)依次连接平行四边形各边中点能得到平行四边形

(3)依次连接菱形各边中点能得到矩形

(4)依次连接矩形各边中点能得到菱形

(5)依次连接正方形各边中点能得到正方形

第四章视图与投影

1.三视图

主视图左视图

俯视图

(1)主视图与左视图要高平齐

(2)主视图与俯视图要长对正

(3)俯视图与左视图要宽相等

2.投影

①平行投影

②中心投影

视点,视线,盲区

第五章反比例函数

k

1.定义:y=-(k≠0)

x

xy=k(k≠0)

y=kx-1(y≠0)

k

2.性质:y=-(k≠0)

x

①k>0时,图像在一,三象限,并且在每个象限内y随x增大而减小

②k<0时,图像在二,四象限,并且在每个象限内y随x增大而增大

3.会与一次函数相结合

一次函数:y=kx+b(k≠0)

性质①k>0时,y随x的增大而增大

②k<0时,y随x的增大而减小

b:在y轴上的截距

第六章频率与概率

1.理论概率

(1)只涉及一步试验概率

多次试验得到的试验频率就等于理论概率

(2)涉及两步试验

①树状图

②列表法

(3)试验做估

初三上册期末数学复习资料章三

1.一元二次方程:只含有一个未知数X的整式方程,并且可以化成aX?+bX+C=0(a≠0)形式称它为一元二次方程

aX?+bX+C=0(a≠0)→一般形式

aX?叫二次项bX叫一次项C叫常数项a叫二次项系数b叫一次项系数

2.一元二次方程解法:

(1)配方法:(X±a)?=b(b≥0)注:二次项系数必须化为1

(2)公式法:aX?+bX+C=0(a≠0)确定a,b,c的值,计算b?-4ac≥0

若b?-4ac>0则有两个不相等的实根,若b?-4ac=0则有两个相等的实根,若b?-4ac<0则无解

若b?-4ac≥0则用公式X=-b±√b?-4ac/2a注:必须化为一般形式

(3)分解因式法

①提公因式法:ma+mb=0→m(a+b)=0

平方差公式:a?-b?=0→(a+b)(a-b)=0

②运用公式法:{

完全平方公式:a?±2ab+b?=0→(a±b)?=0

③十字相乘法

例题:X?-2X-3=0

1\/111

×}X?的系数为1则可以写成{常数项系数为3则可写成{

1/\-31-3

--------

-3+1=-2交叉相乘在相加求值,值必须等于一次项系数

(X+1)(X-3)=o


2021年初三上册期末数学复习资料相关文章