首页 > 学习方法 > 初中学习方法 > 初一学习方法 > 七年级数学 > 初一数学下册单元知识点总结正文

《初一数学下册单元知识点总结》

时间:

学习这件事不在乎有没有人教你,最重要的是在于你自己有没有觉悟和恒心。任何科目学习方法其实都是一样的,不断的记忆与练习,使知识刻在脑海里。下面是小编给大家整理的一些初一数学知识点,希望对大家有所帮助。

初一数学知识点

1、有理数:1.正负数概念;2.整数和分数统称为有理数;3.数轴;4.绝对值;5.有理数加减乘除法法则;6.有理数混合运算。

2、整式的加减:1.单项式;2.单项式的系数;3.单项式的次数;4.多项式以及常数项;5.多项式的次数;6.合并同类项。

3、一元一次方程:1.方程。2.一元一次方程。3.等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。4.等式的性质2:等式两边乘同一个数,或除以一个不为0的数,结果仍相等。5.把等式一边的某项变号后移到另一边,叫做移项。6.应用:行程问题:s=v×t工程问题:工作总量=工作效率×时间盈亏问题:利润=售价-成本利率=利润÷成本×100%售价=标价×折扣数×10%储蓄利润问题:利息=本金×利率×时间本息和=本金+利息

4、图形初步认识:1.几何图形。2.立体图形。3.平面图形。4.相应立体图形的展开图。5.几何体简称为体。6.包围着体的是面,面有平的面和曲的面两种。7.面与面相交的地方形成线,线和线相交的地方是点。8.点动成面,面动成线,线动成体。9.经过探究可以得到一个基本事实:经过两点有一条直线,并且只有一条直线。简述为:两点确定一条直线(公理)。10.交点、中点。11.两点之间,线段最短。(公理)12.连接两点间的线段的长度,叫做这两点的距离。13.角∠也是一种基本的几何图形。14.把一个周角360等分,每一份就是1度的角,记作1°;把一度的角60等分,每一份叫做1分的角,记作1′;把1分的角60等分,每一份叫做1秒的角,记作1″。15.从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。16.如果两个角的和等于90°(直角),就是说这两个叫互为余角,即其中的每一个角是另一个角的余角。17.如果两个角的和等于180°(平角),就说这两个角互为补角,即其中一个角是另一个角的补角。18.等角的补角相等,等角的余角相等。



北师大版初中一年级数学上册知识点

二元一次方程组

1.二元一次方程:含有两个未知数,并且含未知数项的次数是1,这样的方程是二元一次方程.注意:一般说二元一次方程有无数个解.

2.二元一次方程组:两个二元一次方程联立在一起是二元一次方程组.

3.二元一次方程组的解:使二元一次方程组的两个方程,左右两边都相等的两个未知数的值,叫二元一次方程组的解.注意:一般说二元一次方程组只有解(即公共解).

4.二元一次方程组的解法:

(1)代入消元法;(2)加减消元法;

(3)注意:判断如何解简单是关键.

※5.一次方程组的应用:

(1)对于一个应用题设出的未知数越多,列方程组可能容易一些,但解方程组可能比较麻烦,反之则难列易解

(2)对于方程组,若方程个数与未知数个数相等时,一般可求出未知数的值;

(3)对于方程组,若方程个数比未知数个数少一个时,一般求不出未知数的值,但总可以求出任何两个未知数的关系.

一元一次不等式(组)

1.不等式:用不等号,把两个代数式连接起来的式子叫不等式.

2.不等式的基本性质:

不等式的基本性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;

不等式的基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变;

不等式的基本性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向要改变.

3.不等式的解集:能使不等式成立的未知数的值,叫做这个不等式的解;不等式所有解的集合,叫做这个不等式的解集.

4.一元一次不等式:只含有一个未知数,并且未知数的次数是1,系数不等于零的不等式,叫做一元一次不等式;它的标准形式是ax+b0或ax+b0,(a0).

5.一元一次不等式的解法:一元一次不等式的解法与解一元一次方程的解法类似,但一定要注意不等式性质3的应用;注意:在数轴上表示不等式的解集时,要注意空圈和实点.

七年级下册数学知识点

【概率】

一、事件:

1、事件分为必然事件、不可能事件、不确定事件。

2、必然事件:事先就能肯定一定会发生的事件。也就是指该事件每次一定发生,不可能不发生,即发生的可能是100%(或1)。

3、不可能事件:事先就能肯定一定不会发生的事件。也就是指该事件每次都完全没有机会发生,即发生的可能性为零。

4、不确定事件:事先无法肯定会不会发生的事件,也就是说该事件可能发生,也可能不发生,即发生的可能性在0和1之间。

二、等可能性:是指几种事件发生的可能性相等。

1、概率:是反映事件发生的可能性的大小的量,它是一个比例数,一般用P来表示,P(A)=事件A可能出现的结果数/所有可能出现的结果数。

2、必然事件发生的概率为1,记作P(必然事件)=1;

3、不可能事件发生的概率为0,记作P(不可能事件)=0;

4、不确定事件发生的概率在0—1之间,记作0

三、几何概率

1、事件A发生的概率等于此事件A发生的可能结果所组成的面积(用SA表示)除以所有可能结果组成图形的面积(用S全表示),所以几何概率公式可表示为P(A)=SA/S全,这是因为事件发生在每个单位面积上的概率是相同的。

2、求几何概率:

(1)首先分析事件所占的面积与总面积的关系;

(2)然后计算出各部分的面积;

(3)最后代入公式求出几何概率。

初一数学复习方法

复习方法总结

1回归书本,梳理章节概念公式、性质定理等

就像盖房子,房子的地基是否扎实稳固。比如我们在复习课中,要求孩子们默写公式等,记忆单项式、多项式、整式的概念,以及幂的运算、整式乘除的法则,而且一定要记住平方差和完全平方公式以及变形。有些孩子能够背下完全平方公式,但是一旦用的时候,就偏偏不用,因为不够熟练,怕出错,所以就用最复杂的公式推导一遍,费时费力,还总错,而且重要的公式更加生疏。

比如知识点填空:

知识点填空

我们的孩子在学校大题普遍做的多,考试也能拿到一些分数,但是选择填空老错,考完试下来一看,错就错在概念不清。

比如平行线是怎么定义,性质定理有几条,判定定理有几条?他们之间有什么联系和区别?在这一章中,哪些地方一定要加“同一平面内”这5个字?家长们可以让孩子找找看,捋一捋。

再比如说,三角形一章,涉及到三边关系,角的关系,以及三角形的重要线段和它们的性质,等腰等边三角形的性质,这些一定是期末选择题的备选项。

还有全等的几种证明方法,常见的辅助线做法这是几何证明题的思路。

2题型突破,对各章节常见的热点问题归纳练习。

我们的数学、物理这些理科都是要做题型的,而不仅仅是做题,一定要明白思路。

大多数孩子要考的题型和难度,学校每天的作业以及每周的考试卷,你都必须分析一下,对题型归类,你可以用不同的笔标记一下,比如第2题和第8题是一类题,是化简求值还是公式的变形应用?通过这样一遍的分析,孩子们都会发现,其实考来考去,就是那几种题型反复的出,反复的练。这是非常高效的学习方法

3、熟悉套路、模型

平行线常见的模型:铅笔模型、猪蹄模型,比如我经常和大家说的,遇见拐点,就做平行线。

三角形倒角常见模型:8字型、飞镖型、折角型。

三角形全等模型:角平分线的性质模型,等腰直角三角形模型,三垂直模型,翻折(对称)。

学好这些模型相等于我们是拿着工具箱考试,效率很高,比起其他同学,省去了推导的过程,速度又快,又准确。当然前提要掌握好基础内容,不要本末倒置。

如果孩子们能把前面的步骤都做好了,基本知识点,题型都掌握了,计算也不会出错,那你们考试一定没有问题,除了有些学校本来要求考很难,比如压轴题,不在于做的多,而是在精练,你做完之后不断的复盘,用自己的语言说出思路来,找找看里面的逻辑关系。

4、坚持改错题

把整个学期的试卷装订在一起,每周花半天的时间,订正错题,不会的标记星号,问老师问同学,直到会了为止,下周继续改,看自己是否真的懂了,对于错题,就像骆驼吃草一样,不停地咀嚼,错题也需要孩子们不断反复的看思路,才能在考试的时候避免在同类型的题上反复错。

初一数学下册单元知识点总结相关文章