首页 > 学习方法 > 高中学习方法 > 高三学习方法 > 高三数学 > 高考数学圆锥的几何特征复习资料正文

《高考数学圆锥的几何特征复习资料》

时间:

人生处处是考场,今日各为高考忙。斗智斗勇齐亮相,得失成败走一场。考场潇洒不虚枉,多年以后话沧桑!下面就是小编给大家带来的高考数学圆锥几何特征复习资料,希望大家喜欢!

高考数学圆锥的几何特征复习资料一

圆锥的几何特征:

①底面是一个圆;

②母线交于圆锥的顶点;

③侧面展开图是一个扇形。

如何突破圆锥曲线综合题:

一、要熟练掌握圆锥曲线的定义、标准方程和几何性质等基础知识和基本应用。

1.椭圆是要求掌握的内容:定义内涵及应用,过焦点三角形,正、余弦定理的使用。同学们需熟知椭圆的几何性质和常见结论。

2.双曲线是了解的内容:一般以客观题,定义,弄清是整条,还是双曲线的一支(与椭圆类比)。

3.抛物线:文科是了解的内容。定义的实质为“一动三定”:一个动点(设为M);一个定点F(抛物线的焦点);一条定直线l(抛物线的准线);一个定值把抛物线上的点到焦点的问题转化为抛物线上的点到准线问题。

二、要熟练掌握解决有关圆锥曲线基本问题的通性通法。

解析几何所研究的问题有两类:一是根据条件求圆锥曲线的方程;二是根据方程讨论曲线的几何性质。因此,在复习时要重点掌握好圆锥曲线中的一些基本问题。

1.求圆锥曲线的标准方程:

求圆锥曲线的标准方程常常使用定义法与待定系数法,一般求已知曲线类型的曲线方程问题,可采用“先定形,后定式,再定量”。

2.求曲线的轨迹方程:

文科虽不做要求,但课本中有这样问题,也是高考的热点,难度有所降低,因此必须认真对待。轨迹问题具有两个方面:一是求轨迹方程;二是由轨迹方程研究轨迹的性质。在复习时要掌握求轨迹方程的思路和方法,要学会如何将解析几何的位置关系转化为代数的数量关系进而转化为坐标关系。求轨迹方程常用的方法有定义法、直接法、代入法、参数法等。注意:①轨迹与轨迹方程的区别;②轨迹方程的纯粹性与完备性。

三、求解圆锥曲线的性质:

(1)基本运算.

求解圆锥曲线的几何性质一定要先把方程化为标准形式,明确a,b,c,e,p的值,要结合图形进行分析,建立基本量之间的联系。

(2)要掌握解决有关直线与圆锥曲线综合问题的相应解法.

直线与圆锥曲线主要涉及:位置关系的判定、弦长、中点、最值、对称、轨迹、定点、定值、参数问题及相关的不等式与等式的证明等问题,数形结合、分类讨论、函数与方程、等价转化等数学思想方法、计算能力要求较高。

高考数学答题复习资料技巧二

1.调整好状态,控制好自我。

(1)保持清醒。数学的考试时间在下午,建议同学们中午最好休息半个小时或一个小时,其间尽量放松自己,从心理上暗示自己:只有静心休息才能确保考试时清醒。

(2)按时到位。今年的答题卡不再单独发放,要求答在答题卷上,但发卷时间应在开考前5-10分钟内。建议同学们提前15-20分钟到达考场。

2.通览试卷,树立自信。

刚拿到试卷,一般心情比较紧张,此时不易匆忙作答,应从头到尾、通览全卷,哪些是一定会做的题要心中有数,先易后难,稳定情绪。答题时,见到简单题,要细心,莫忘乎所以。面对偏难的题,要耐心,不能急。

3.提高解选择题的速度、填空题的准确度。

数学选择题是知识灵活运用,解题要求是只要结果、不要过程。因此,逆代法、估算法、特例法、排除法、数形结合法……尽显威力。12个选择题,若能把握得好,容易的一分钟一题,难题也不超过五分钟。由于选择题的特殊性,由此提出解选择题要求“快、准、巧”,忌讳“小题大做”。填空题也是只要结果、不要过程,因此要力求“完整、严密”。

4.审题要慢,做题要快,下手要准。

题目本身就是破解这道题的信息源,所以审题一定要逐字逐句看清楚,只有细致地审题才能从题目本身获得尽可能多的信息。

找到解题方法后,书写要简明扼要,快速规范,不拖泥带水,牢记高考评分标准是按步给分,关键步骤不能丢,但允许合理省略非关键步骤。答题时,尽量使用数学语言、符号,这比文字叙述要节省而严谨。

5.保质保量拿下中下等题目。

中下题目通常占全卷的80%以上,是试题的主要部分,是考生得分的主要来源。谁能保质保量地拿下这些题目,就已算是打了个胜仗,有了胜利在握的心理,对攻克高难题会更放得开。

6.要牢记分段得分的原则,规范答题。

会做的题目要特别注意表达的准确、考虑的周密、书写的规范、语言的科学,防止被“分段扣点分”。

难题要学会:

(1)缺步解答:聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,能解决多少就解决多少,能演算几步就写几步。特别是那些解题层次明显的题目,或者是已经程序化了的方法,每进行一步得分点的演算都可以得分,最后结论虽然未得出,但分数却已过半。

(2)跳步答题:解题过程卡在某一过渡环节上是常见的。这时,我们可以假定某些结论是正确的往后推,看能否得到结论,或从结论出发,看使结论成立需要什么条件。如果方向正确,就回过头来,集中力量攻克这一“卡壳处”。如果时间不允许,那么可以把前面的写下来,再写出“证实某步之后,继续有……”一直做到底,这就是跳步解答。也许,后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面。若题目有两问,第一问想不出来,可把第一问作“已知”,“先做第二问”,这也是跳步解答。今年仍是网上阅卷,望广大考生规范答题,减少隐形失分。

高考数学圆锥的几何特征复习资料相关文章

1.高三数学复习资料整理

2.2017高三数学总复习资料

3.2020高考数学复习:解析几何

4.高中数学复习方法及解析几何知识点整理

5.2017年高考数学知识点总结

6.高考数学必考题型以及题型分析

7.高考数学:一轮二轮复习如何做,这24个易错点一定要牢记!

8.2017高中数学平面解析几何复习方法

9.2020高三数学一轮复习最新规划与答题技巧