首页 > 学习方法 > 高中学习方法 > 高三学习方法 > 高三数学 > 高中数学必修知识点正文

《高中数学必修知识点》

时间:

学习数学记得东西很多,如果单纯的记忆每个公式,不但增加记忆量而且容易忘。以下是小编为大家精心整理的高中数学必修知识点,欢迎大家阅读参考。

高三数学必修1知识点一

1.集合的含义与表示

集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个整体。

把研究对象统称为元素,把一些元素组成的总体叫集合,简称为集。

2.集合的中元素的三个特性:

(1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。

(2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。

(3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合

3.集合的表示:{…}

(1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

(2)集合的表示方法:列举法与描述法。

a、列举法:将集合中的元素一一列举出来{a,b,c……}

b、描述法:

①区间法:将集合中元素的公共属性描述出来,写在大括号内表示集合。

{xR|x-3>2},{x|x-3>2}

②语言描述法:例:{不是直角三角形的三角形}

③Venn图:画出一条封闭的曲线,曲线里面表示集合。

4.集合的分类:

(1)有限集:含有有限个元素的集合

(2)无限集:含有无限个元素的集合

(3)空集:不含任何元素的集合

5.元素与集合的关系:

(1)元素在集合里,则元素属于集合,即:aA

(2)元素不在集合里,则元素不属于集合,即:a¢A

注意:常用数集及其记法:

非负整数集(即自然数集)记作:N

正整数集N_或N+

整数集Z

有理数集Q

实数集R

6.集合间的基本关系

(1)“包含”关系(1)—子集

定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集。

高三数学必修1知识点二

1. 函数的奇偶性

(1)若f(x)是偶函数,那么f(x)=f(-x) ;

(2)若f(x)是奇函数,0在其定义域内,则 f(0)=0(可用于求参数);

(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或 (f(x)≠0);

(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;

(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;

2. 复合函数的有关问题

(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即 f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

(2)复合函数的单调性由“同增异减”判定;

3.函数图像(或方程曲线的对称性)

(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;

(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;

(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;

(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;

(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x= 对称;

4.函数的周期性

(1)y=f(x)对x∈R时,f(x +a)=f(x-a) 或f(x-2a )=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数;

(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;

(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;

(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2 的周期函数;

(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2 的周期函数;

(6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)= ,则y=f(x)是周期为2 的周期函数;

5.方程

(1)方程k=f(x)有解 k∈D(D为f(x)的值域);

(2)a≥f(x) 恒成立 a≥[f(x)]max,;

a≤f(x) 恒成立 a≤[f(x)]min;

(3)(a>0,a≠1,b>0,n∈R+);

log a N= ( a>0,a≠1,b>0,b≠1);

(4)log a b的符号由口诀“同正异负”记忆;

a log a N= N ( a>0,a≠1,N>0 );

6.映射

判断对应是否为映射时,抓住两点:

(1)A中元素必须都有象且唯一;

(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

7.函数单调性

(1)能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性;

(2)依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题

8.反函数

对于反函数,应掌握以下一些结论:

(1)定义域上的单调函数必有反函数;

(2)奇函数的反函数也是奇函数;

(3)定义域为非单元素集的偶函数不存在反函数;

(4)周期函数不存在反函数;(5)互为反函数的两个函数具有相同的单调性;

(5)y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A).

9.数形结合

处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系.

10. 恒成立问题

恒成立问题的处理方法:

(1)分离参数法;

(2)转化为一元二次方程的根的分布列不等式(组)求解;

 高中数学必修二知识点

1、棱柱

定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱ABCDE?A'B'C'D'E'几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

2、棱锥

定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体

分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等

'''''表示:用各顶点字母,如五棱锥P?ABCDE

几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相

似,其相似比等于顶点到截面距离与高的比的平方。

3、棱台

定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分

分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等

表示:用各顶点字母,如四棱台ABCD—A'B'C'D'

几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点

4、圆柱

定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体

几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

5、圆锥

定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体

几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

6、圆台

定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分

几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形

高中数学学习方法

1、课前预习:首先上课前要做预习,课前预习能提前了解将要学习的知识。

2、记笔记:指的是课堂笔记,每节课时间有限,老师一般讲的都是精华部分。

3、课后复习:通预习一样,也是行之有效的方法。

4、涉猎课外习题:多涉猎一些课外习题,学习它们的解题思路和方法。

5、学会归类总结:学习数学记得东西很多,如果单纯的记忆每个公式,不但增加记忆量而且容易忘。

6、建立纠错本:把经常出错的题目集中在一起。

7、写考试总结:考试总结可以帮助找出学习之中不足之处,以及知识的薄弱环节。

8、培养学习兴趣:兴趣是最好的老师,只有有了兴趣才会自主自发的进行学习,学习效率才会提高。

高中数学必修知识点相关文章

1.高中数学必考知识点归纳

2.高中数学必修二知识点总结(复习提纲)

3.高中数学高一数学必修一知识点

4.高中数学必修一知识点框架图

5.高中数学必修三知识点总结

6.高中数学必修二知识点总结

7.高中数学高一数学必修一知识点与学习方法

8.高二数学知识点总结

9.高中数学填空题的常用解题方法与必修二知识点全面总结