首页 > 学习方法 > 高中学习方法 > 高三学习方法 > 高三物理 > 高三物理考试必考知识点正文

《高三物理考试必考知识点》

时间:

时光匆匆消减了岁月,换来了成功!并肩奋斗跨越了高考,升入了大学!为了梦想不断前行,定要闯下一片大好前程!兄弟,拼吧!小编整理了高三物理考试必考知识点,希望对你有所帮助!

高三物理考试必考知识点1

一、质点的运动(1)------直线运动

1)匀变速直线运动

1.平均速度V平=s/t(定义式)2.有用推论Vt2-Vo2=2as

3.中间时刻速度Vt/2=V平=(Vt+Vo)/24.末速度Vt=Vo+at

5.中间位置速度Vs/2=[(Vo2+Vt2)/2]6.位移s=V平t=Vot+at=Vt/2t

7.加速度a=(Vt-Vo)/t{以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}

8.实验用推论Δs=aT2{Δs为连续相邻相等时间(T)内位移之差}

9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。

注:

(1)平均速度是矢量;

(2)物体速度大,加速度不一定大;

(3)a=(Vt-Vo)/t只是量度式,不是决定式;

(4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。

2)自由落体运动

1.初速度Vo=02.末速度Vt=gt

3.下落高度h=gt(从Vo位置向下计算)4.推论Vt2=2gh

注:

(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;

(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。

(3)竖直上抛运动

1.位移s=Vot-gt2.末速度Vt=Vo-gt(g=9.8m/s2≈10m/s2)

3.有用推论Vt2-Vo2=-2gs4.上升高度Hm=Vog(抛出点算起)

5.往返时间t=2Vo/g(从抛出落回原位置的时间)

注:

(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;

(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;

(3)上升与下落过程具有对称性,如在同点速度等值反向等。

二、质点的运动(2)----曲线运动、万有引力

1)平抛运动

1.水平方向速度:Vx=Vo2.竖直方向速度:Vy=gt

3.水平方向位移:x=Vot4.竖直方向位移:y=gt

5.运动时间t=(2y/g)(通常又表示为(2h/g))

6.合速度Vt=(Vx2+Vy2)=[Vo2+(gt)2]

合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0

7.合位移:s=(x2+y2),

位移方向与水平夹角α:tgα=y/x=gt/2Vo

8.水平方向加速度:ax=0;竖直方向加速度:ay=g

注:

(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;

(2)运动时间由下落高度h(y)决定与水平抛出速度无关;

(3)θ与β的关系为tgβ=2tgα;

(4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。

2)匀速圆周运动

1.线速度V=s/t=2πr/T2.角速度ω=Φ/t=2π/T=2πf

3.向心加速度a=V2/r=ω2r=(2π/T)2r4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合

5.周期与频率:T=1/f6.角速度与线速度的关系:V=ωr

7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)

8.主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。

注:

(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;

(2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。

3)万有引力

1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}

2.万有引力定律:F=Gm1m2/r2(G=6.67×10-11N?m2/kg2,方向在它们的连线上)

3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2{R:天体半径(m),M:天体质量(kg)}

4.卫星绕行速度、角速度、周期:V=(GM/r);ω=(GM/r3);T=2π(r3/GM){M:中心天体质量}

5.第一(二、三)宇宙速度V1=(g地r地)=(GM/r地)=7.9km/s;V2=11.2km/s;V3=16.7km/s

6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}

注:

(1)天体运动所需的向心力由万有引力提供,F向=F万;

(2)应用万有引力定律可估算天体的质量密度等;

(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;

(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);

(5)地球卫星的环绕速度和最小发射速度均为7.9km/s。

三、力(常见的力、力的合成与分解)

1)常见的力

1.重力G=mg(方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近)

2.胡克定律F=kx{方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}

3.滑动摩擦力F=μFN{与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)}

4.静摩擦力0≤f静≤fm(与物体相对运动趋势方向相反,fm为静摩擦力)

5.万有引力F=Gm1m2/r2(G=6.67×10-11N?m2/kg2,方向在它们的连线上)

6.静电力F=kQ1Q2/r2(k=9.0×109N?m2/C2,方向在它们的连线上)

7.电场力F=Eq(E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)

8.安培力F=BILsinθ(θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)

9.洛仑兹力f=qVBsinθ(θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)

注:

(1)劲度系数k由弹簧自身决定;

(2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定;

(3)fm略大于μFN,一般视为fm≈μFN;

(4)其它相关内容:静摩擦力(大小、方向)〔见第一册P8〕;

(5)物理量符号及单位B:磁感强度(T),L:有效长度(m),I:电流强度(A),V:带电粒子速度(m/s),q:带电粒子(带电体)电量(C);

(6)安培力与洛仑兹力方向均用左手定则判定。

2)力的合成与分解

1.同一直线上力的合成同向:F=F1+F2,反向:F=F1-F2(F1>F2)

2.互成角度力的合成:

F=(F12+F22+2F1F2cosα)(余弦定理)F1⊥F2时:F=(F12+F22)

3.合力大小范围:|F1-F2|≤F≤|F1+F2|

4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)

注:

(1)力(矢量)的合成与分解遵循平行四边形定则;

(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;

(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;

(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;

(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。

四、动力学(运动和力)

1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止

2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}

3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}

4.共点力的平衡F合=0,推广{正交分解法、三力汇交原理}

5.超重:FN>G,失重:FN>r}

3.受迫振动频率特点:f=f驱动力

4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕

5.机械波、横波、纵波〔见第二册P2〕

6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}

7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)

8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大

9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)

10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕}

注:

(1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;

(2)加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰与波谷相遇处;

(3)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式;

(4)干涉与衍射是波特有的;

(5)振动图象与波动图象;

(6)其它相关内容:超声波及其应用〔见第二册P22〕/振动中的能量转化〔见第一册P173〕。

六、冲量与动量(物体的受力与动量的变化)

1.动量:p=mv{p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}

3.冲量:I=Ft{I:冲量(N?s),F:恒力(N),t:力的作用时间(s),方向由F决定}

4.动量定理:I=Δp或Ft=mvt–mvo{Δp:动量变化Δp=mvt–mvo,是矢量式}

5.动量守恒定律:p前总=p后总或p=p’′也可以是m1v1+m2v2=m1v1′+m2v2′

6.弹性碰撞:Δp=0;ΔEk=0{即系统的动量和动能均守恒}

7.非弹性碰撞Δp=0;0<ΔEK<ΔEKm{ΔEK:损失的动能,EKm:损失的动能}

8.完全非弹性碰撞Δp=0;ΔEK=ΔEKm{碰后连在一起成一整体}

9.物体m1以v1初速度与静止的物体m2发生弹性正碰:

v1′=(m1-m2)v1/(m1+m2)v2′=2m1v1/(m1+m2)

10.由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒)

11.子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失

E损=mvo-(M+m)vt=fs相对

高三物理考试必考知识点2

(1)粒子散射实验

1909年,卢瑟福及助手盖革和马斯顿完成的。

现象:

a.绝大多数粒子穿过金箔后,仍沿原来方向运动,不发生偏转。

b.有少数粒子发生较大角度的偏转。

c.有极少数粒子的偏转角超过了90°,有的几乎达到180°,即被反向弹回。

(2)原子的核式结构模型

由于粒子的质量是电子质量的七千多倍,所以电子不会使粒子运动方向发生明显的改变,只有原子中的正电荷才有可能对粒子的运动产生明显的影响。

如果正电荷在原子中的分布,像汤姆生模型那模均匀分布,穿过金箔的粒了所受正电荷的作用力在各方向平衡,粒了运动将不发生明显改变。散射实验现象证明,原子中正电荷不是均匀分布在原子中的。

1911年,卢瑟福通过对粒子散射实验的分析计算提出原子核式结构模型:在原子中心存在一个很小的核,称为原子核,原子核集中了原子所有正电荷和几乎全部的质量,带负电荷的电子在核外空间绕核旋转。

高三物理考试必考知识点3

1.动量和冲量

(1)动量:运动物体的质量和速度的乘积叫做动量,即p=mv.是矢量,方向与v的方向相同.两个动量相同必须是大小相等,方向一致.

(2)冲量:力和力的作用时间的乘积叫做该力的冲量,即I=Ft.冲量也是矢量,它的方向由力的方向决定.

2.★★动量定理:物体所受合外力的冲量等于它的动量的变化.表达式:Ft=p′-p或Ft=mv′-mv

(1)上述公式是一矢量式,运用它分析问题时要特别注意冲量、动量及动量变化量的方向.

(2)公式中的F是研究对象所受的包括重力在内的所有外力的合力.

(3)动量定理的研究对象可以是单个物体,也可以是物体系统.对物体系统,只需分析系统受的外力,不必考虑系统内力.系统内力的作用不改变整个系统的总动量.

(4)动量定理不仅适用于恒定的力,也适用于随时间变化的力.对于变力,动量定理中的力F应当理解为变力在作用时间内的平均值.

★★★3.动量守恒定律:一个系统不受外力或者所受外力之和为零,这个系统的总动量保持不变.

表达式:m1v1+m2v2=m1v1′+m2v2′

(1)动量守恒定律成立的条件

①系统不受外力或系统所受外力的合力为零.

②系统所受的外力的合力虽不为零,但系统外力比内力小得多,如碰撞问题中的摩擦力,爆炸过程中的重力等外力比起相互作用的内力来小得多,可以忽略不计.

③系统所受外力的合力虽不为零,但在某个方向上的分量为零,则在该方向上系统的总动量的分量保持不变.

(2)动量守恒的速度具有“四性”:①矢量性;②瞬时性;③相对性;④普适性.

4.爆炸与碰撞

(1)爆炸、碰撞类问题的共同特点是物体间的相互作用突然发生,作用时间很短,作用力很大,且远大于系统受的外力,故可用动量守恒定律来处理.

(2)在爆炸过程中,有其他形式的能转化为动能,系统的动能爆炸后会增加,在碰撞过程中,系统的总动能不可能增加,一般有所减少而转化为内能.

(3)由于爆炸、碰撞类问题作用时间很短,作用过程中物体的位移很小,一般可忽略不计,可以把作用过程作为一个理想化过程简化处理.即作用后还从作用前瞬间的位置以新的动量开始运动.

5.反冲现象:反冲现象是指在系统内力作用下,系统内一部分物体向某方向发生动量变化时,系统内其余部分物体向相反的方向发生动量变化的现象.喷气式飞机、火箭等都是利用反冲运动的实例.显然,在反冲现象里,系统的动量是守恒的.


高三物理考试必考知识点相关文章