首页 > 学习方法 > 小学学习方法 > 六年级方法 > 六年级数学 > 六年级数学比例应用题练习题正文

《六年级数学比例应用题练习题》

时间:

毅力,是千里大堤一沙一石的凝聚,一点点地累积,才有前不见头后不见尾的壮丽;毅力,是春蚕吐丝一缕一缕的环绕,一丝丝地坚持,才有破茧而出重见光明的辉煌;毅力,是远航的船的帆,有了帆,船才可以到达成功的彼岸。数学只有学会方法才能解题。下面就是小编为大家梳理归纳的知识,希望大家能够喜欢。

六年级数学比例应用题练习

(1)水果店一天运进苹果、香蕉、梨共390千克,苹果的重量是梨的1.5倍,香蕉的重量是梨的3/4,三种水果各运进多少千克?

(2)一缸水,用去1/2和5桶,还剩30%,这缸水有多少桶?

(3)有一快棱长20厘米的正方体木料,刨成一个底面直径的圆柱体,刨去木料的体积是多少?

(4)一根钢管长10米,第一次截去它的7/10,第二次又截去余下的1/3,还剩多少米?

(5)两个小组装配收音机,甲组每天装配50台,第一天完成了总任务的10%,这时乙组才开始装配,每天装配40台,完成这批任务时,甲组做了多少天?

(6)修筑一条公路,完成了全长的2/3后,离中点16。5千米,这条公路全长多少千米?

(7)师徒两人合做一批零件,徒弟做了总数的2/7,比师傅少做21个,这批零件有多少个?

(8)两队修一条公路,甲队每天修全长的1/5,乙队独做7.5天修好。如果两队合修2天后,其余由乙队独修,还要几天完成?

(9)仓库里有一批化肥,第一次取出总数的2/5,第二次取出总数的1/3少12袋,这时仓库里还剩24袋,两次共取出多少袋?

(10)前轮在720米的距离里比后轮多转40周,如果后轮的周长是2米,求前轮的周长。

11、为创建海华公司,张、王、李三人分别投资100万元、120万元和80万元。在他们三人的共同努力下,到年末,公司共盈利60万元,你认为该如何合理分配这笔钱,每人分别得多少?

12、甲乙两地相距360千米,一辆汽车从甲地到乙地计划7小时行完全程,汽车的速度如下表,问能否在规定的时间内行完全程?(计算后简要说明)

13、在比例尺是的地图上,量得甲乙两地的距离为4.5厘米,如果一辆客车和货车同时从甲乙两地相对开出,经过3小时相遇。已知客车每小时行65千米,那么这辆货车每小时行多少千米?

14、在比例尺是1:3000000的地图上,量得A、B两城之间的距离是2.4厘米。在A、B两城之间有一中途停靠站C,A、B两城到C站的距离比是7:5。一辆汽车从B城到C站共用了0.6小时,求这辆汽车的速度。

15、甲乙两人分别从相距255千米的两地同时出发相向而行,已知甲乙速度比为10:7,两人相遇时各行了多少千米?

16、小淘气看一本科技书,第一天看了全书的1,第二天看了42页,这时看了的页数与剩6下的页数比是2:5,这本科技书一共有多少页?

17、把长35厘米的圆柱体按3∶2截成了一长一短两个小圆柱体后,表面积总和增加了30平方厘米。求截成的较长一个圆柱的体积。

18、一个直角三角形的周长为36厘米,三条边的长度比是3 :4 :5,这个三角形的面积是多少平方厘米?

19、一瓶盐水,盐和水的重量比是1 :24,如果再放入75克水,这时盐与水的重量比是1 :27,原来瓶内盐水重多少千克?

20、盒子里有三种颜色的球,黄球个数与红球个数的比是2 :3,红球个数与白球个数的比是4 :5。已知三种颜色的球共175个,红球有多少个?

21、两个相同的瓶子都装满了酒精溶液,一个瓶中酒精与水的体积比是3 :1,另一个瓶中酒精与水的体积比是4:1。如果把这两个瓶中酒精溶液混合,混合溶液中酒精和水的比是多少?

22、五角人民币与贰角人民币的张数比为12 :35,那么伍角与贰角的总钱数比为多少?

23、甲、乙、丙三个数的平均数是60。甲、乙、丙三个数的比是3 :2 :1。甲、乙、丙三个数各是多少?

24、一个直角三角形的两个锐角度数的比是2 :1,这两个锐角分别是多少度?

25、大、小两瓶油共重2.7千克,大瓶的油用去0.2千克后,剩下的油与小瓶内油的重量比是3 :2。求大、小瓶里各装油多少千克?

26、甲、乙、丙三位同学共有图书108本,乙比甲多18本,乙与丙的图书数之比是5 :4,求甲、乙、丙三人各有图书多少本?

27、一个直角三角形的三条边总和是60厘米,已知三条边的比是3 :4 :5.这个直角三角形的面积是多少平方厘米?

28、一批零件分给甲、乙、丙三人完成,甲完成了总任务的30%,其余的由乙、丙按3∶4来做,丙共做了200个,问这批零件共有多少个?

29、甲、乙、丙三人的彩球数的比例为9:4:2,甲给了丙30个彩球,乙也给了丙一些彩球,比例变为2 :1 :1。乙给了丙多少个彩球?

30、某车间生产了甲、乙、丙三种配套机件共1280只,其中甲乙两种机件只数的比是3∶2,丙种机件比甲种多80只,丙种机件生产了多少只?

31、王老师用100元去买了20支圆珠笔和10支钢笔,每支钢笔的价钱和每支圆珠笔的价钱的比是3 :1。问买圆珠笔和钢笔各花了多少元?

32、甲、乙两包糖果的重量的比是4 :1,如果从甲包取出10克放入乙包后,甲、乙两包糖果重量的比变为7 :5。那么两包糖果重量的总和是多少?

33、某小学男、女生人数之比是16 :13,后来有几位女生转学到这所学校,男、女生人数之比变成为6:5,这时全体学生共有880人,问转学来的女生有多少人?

34、小明读一本书,已读的和末读的页数比是1 :5。如果再读30页,则已读的和末读的页数之比为3 :5。这本书共有多少页?

(35)在一幅比例尺是1:30000 的地图上,量得东、西两村的距离是12.3厘米,东、西两村的实际距离是多少米?

(36)甲地到乙地的实际距离是120千米,在一幅比例尺是1:6000000的地图上,应画多少厘米?

(37)一幅地图,图上的4厘米,表示实际距离200千米,这幅图的比例尺是多少?

(38)在一幅比例尺是1:4000 的平面图上,量得一块三角形的菜地的底是12厘米,高是8厘米,这块菜地的实际面积是多少公顷?

(39)一辆汽车2小时行驶130千米。照这样的速度,从甲地到乙地共行驶5小时。甲、乙两地相距多少千米?

(40)一辆汽车从甲地开往乙地,每小时行64千米,5小时到达。如果要4小时到达,每小时需行驶多少千米?

(41)一幅地图,图上的4厘米,表示实际距离200千米,这幅图的比例尺是多少?

(42)甲、乙两地相距240千米,画在比例尺是1∶3000000的地图上,长度是多少厘米?

(43在一幅地图上,用3厘米的线段表示实际距离600千米。量得甲、乙两地的距离是4.5厘米,甲、乙两地的实际距离是多少千米?

(44) 运来一批纸装订成练习本,每本36页,可订40本,若每本30页,可订多少本?

45、1吨煤用去45吨,还剩20%吨。(  )

46、大小两个圆,大圆周长与直径的比,等于小圆周长与直径的比。(  )

47、甲数比乙数多吨,则乙数比甲数少吨。(  )

48、比的前项和后项同时乘或除以非0的数,比值不变。(  )

49、9千克的水加入1千克的盐后,盐占盐水的。(  )

50、4米长的钢管,剪下1/4后,还剩下3米。(  )

51、比的前项和后项同时扩大2倍,比值不变。(  )

52、两个分数相除,商一定小于被除数。(  )

53、从家到学校,小明用8分钟,小红用9分钟,小明和小红的速度比是8:9(  )

54、把一段木材分成5段,每段是全长的。(  )

55、1吨铁的和5吨铁的质量相等。(  )

56、甲数的56等于乙数的65,甲数比乙数小。(  )

57、a是b的9倍,b与a的比是9:1。(  )

58、真分数的倒数都比它大,假分数的倒数都比它小。(  )

59、因为25×12×5=1,所以25、12、5互为倒数。(  )

60、一桶油用去12千克,还剩下12。(  )

61、10克盐溶解在100克水中,这时盐和盐水的比是1:10。(  )

62、比的前项乘5,后项除以。比值不变。(  )

63、男生比女生多,男生与女生人数的比是7:5。(  )

64、既可以看作分数,也可以看成一个比。(  )

65、任何数都有对应的倒数。(  )

66、比的前项和后项都增加或减少相同的数,比值不变。(  )

67、如果大圆和小圆的半径比是5:1,面积和周长的比都是25:1(  )

68、生产105个零件,全部合格,合格率是100%。(  )

69、甲数比乙数多14,甲数与乙数的比是1:4。(  )

70、比的前项和后项都乘或除以一个数,比值不变。(  )

71、圆柱的体积是圆锥体积的3倍。(  )

72、半径是2CM的圆,周长和面积相等。(  )

73、正方形的面积和边长成正比例。(  )

74、如果两个分数的值相等,那么它们的分数单位也相等。(  )

75、圆锥的半径扩大2倍,体积也扩大2倍。(  )

76、相邻的两个自然数的积一定是2的倍数。(  )

77、如果一个三角形的两个内角之和是100°,那么这个三角形一定是锐角三角形。(  )

78、用98颗黄豆做发芽实验,结果全部发芽。这些黄豆的发芽率是98%。(  )

79、周长相等的两个圆,面积不一定相等。(  )

80、扇形统计图能清楚地表明各部分数量同总数之间的关系。(  )



六年级数学比例应用题练习题相关文章