首页 > 学习方法 > 小学学习方法 > 四年级方法 > 四年级数学 > 四年级数学知识点归纳正文

《四年级数学知识点归纳》

时间:

学习从来无捷径。每一门科目都有自己的学习方法,但其实都是万变不离其中的,数学作为主科之一,和语文英语一样,也是要记、要背、要讲练的。下面是小编给大家整理的一些四年级数学知识点的学习资料,希望对大家有所帮助。

人教版四年级下册数学知识点总结

运算定律及简便运算

一、加法运算定律:

1、加法交换律:两个数相加,交换加数的位置,和不变。a+b=b+a

2、加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。(a+b)+c=a+(b+c)

加法的这两个定律往往结合起来一起使用。

如:165+93+35=93+(165+35)依据是什么?

3、连减的性质:一个数连续减去两个数,等于这个数减去那两个数的和。a-b-c=a-(b+c)

二、乘法运算定律:

1、乘法交换律:两个数相乘,交换因数的位置,积不变。a×b=b×a

2、乘法结合律:三个数相乘,可以先把前两个数相乘,再乘以第三个数,也可以先把后两个数相乘,再乘以第一个数,积不变。(a×b)×c=a×(b×c)

乘法的这两个定律往往结合起来一起使用。如:125×78×8的简算

3、乘法分配律:两个数的和与一个数相乘,可以先把这两个数分别与这个数相乘,再把积相加。

(a+b)×c=a×c+b×c  (a-b)×c=a×c-b×c

人教版四年级数学知识点

鸡兔问题公式

(1)已知总头数和总脚数,求鸡、兔各多少:

(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;

总头数-兔数=鸡数。

或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;

总头数-鸡数=兔数。

例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”

解一(100-2×36)÷(4-2)=14(只)………兔;

36-14=22(只)……………………………鸡。

解二(4×36-100)÷(4-2)=22(只)………鸡;

36-22=14(只)…………………………兔。

(答略)

(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式

(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;

总头数-兔数=鸡数

或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;

总头数-鸡数=兔数。(例略)

(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。

(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;

总头数-兔数=鸡数。

或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;

总头数-鸡数=兔数。(例略)

(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:

(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?”

解一(4×1000-3525)÷(4+15)

=475÷19=25(个)

解二1000-(15×1000+3525)÷(4+15)

=1000-18525÷19

=1000-975=25(个)(答略)

(“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费×-×元,破损者不仅不给运费,还需要赔成本×-×元……。它的解法显然可套用上述公式。)

(5)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式:

〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;

〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数。

例如,“有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只。鸡兔各是多少只?”

解〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2

=20÷2=10(只)……………………………鸡

〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2

=12÷2=6(只)…………………………兔(答略)

鸡兔同笼

1、鸡兔同笼属于假设问题,假设的和最后结果相反。

2、“鸡兔同笼”问题的解题方法

假设法:

①假如都是兔

②假如都是鸡

③古人“抬脚法”:

解答思路:

假如每只鸡、每只兔各抬起一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”。这样,鸡和兔的脚的总数就少了一半。这种思维方法叫化归法。

3、公式:

鸡兔总脚数÷2-鸡兔总数=兔的只数;

鸡兔总数-兔的只数=鸡的只数。

四年级上册数学《近似数》知识点

近似数知识点

1、 精确数与近似数的特点。

精确数一般都以“一”为单位,近似数都是省略尾数,以“万”或“亿”为单位。

2、 用四舍五入法保留近似数的方法。

根据题中要求,看到所要保留位数的下一位,如果这一位满5,则向前一位进一;如果不够5则舍去。而不管尾数的后几位是多少。如精确到万位,只看千位,精确到亿位,只看到千万位。最后一定要写出单位名称。

典型练习题

一、填空

1、一个数是由7个千、3个百和5个十组成的,这个数是( )。

2、一个数从右边起,百位是第( )位,第五位是( )位。

3、3465的位是( )位,是( )位数。“6”在( )位上,表示( )。“3”在( )位上,表示( )。

4、100里面有( )十,一千里面有( )百,10个一是( )。

5、的四位数是( ),的三位数是( ),它们的和( ),差是( )。由( )个千、( )个百、( )个一组成3207。

6、万以内数的读法是从( )位起,按照数位顺序读;( )位上是几就读( )千;百位上是几就读( )……;中间有一个或两个0,只读()个零;末尾不管有几个零都( )。


四年级数学知识点归纳相关文章