《六年级数学上册分数乘法知识点(优秀4篇)》
在日常生活或是工作,学习中,大家一定都或多或少地接触过一些数学知识,这次帅气的小编为您整理了六年级数学上册分数乘法知识点(优秀4篇),如果对您有一些参考与帮助,请分享给最好的朋友。
六年级数学上册分数乘法知识点 篇1
1 。分数的意义
把单位1平均分成若干份,表示这样的一份或者几份的数叫做分数。
在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位1平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。
把单位1平均分成若干份,表示其中的一份的数,叫做分数单位。
2. 分数的分类
真分数:分子比分母小的分数叫做真分数。真分数小于1。
假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。
带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。
3 。约分和通分
把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。
分子分母是互质数的分数,叫做最简分数。
把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
4.百分数
表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率 或百分比。百分数通常用%来表示。百分号是表示百分数的符号。
六年级数学上册分数乘法知识点 篇2
一、分数乘法
(一)、分数乘法的计算法则:
1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分)
2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,再计算。注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(二)、规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。一个数(0除外)乘小于1的数(0除外),积小于这个数。一个数(0除外)乘1,积等于这个数。
(三)、分数混合运算的运算顺序和整数的运算顺序相同。
(四)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=ac+bcac+bc=(a+b)×c
二、分数乘法的解决问题(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)
1、找单位“1”:在分率句中分率的前面;或“占”、“是”、“比”的后面
2、求一个数的几倍:一个数×几倍;求一个数的几分之几是多少:一个数×。
3、写数量关系式技巧:
(1)“的”相当于“×”“占”、“是”、“比”相当于“=”
(2)分率前是“的”:单位“1”的量×分率=分率对应量
(3)分率前是“多或少”的意思:单位“1”的量×(1分率)=分率对应量三、倒数
1、倒数的意义:乘积是1的两个数互为倒数。强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。(要说清谁是谁的倒数)。
2、求倒数的方法:
(1)、求分数的倒数:交换分子分母的位置。
(2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。
(3)、求带分数的倒数:把带分数化为假分数,再求倒数。
(4)、求小数的倒数:把小数化为分数,再求倒数。
3、1的倒数是1;0没有倒数。因为1×1=1;0乘任何数都得0,(分母不能为0)
4、对于任意数,它的倒数为;非零整数的倒数为;分数的倒数是;
5、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。
六年级数学上册分数乘法知识点 篇3
一、单元分析
本单元教材是在学生掌握了整数乘法,分数的意义、性质,以及分数加、减法的计算等知识的基础上进行教学的。内容包括分数乘法、利用分数乘法解决问题、倒数的认识。这些内容都属于分数中的基本知识和技能。利用这些知识不仅可以解决有关的实际问题,而且也是后面学习分数除法,以及百分数知识的重要基础。
二、单元学习目标
1.建立分数乘法的原型,掌握分数乘法的计算方法,能够比较熟练地进行计算。
2.理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。
3.会利用分数乘法解决一些实际问题。
4.使学生理解倒数的意义,掌握求倒数的方法。
三、单元课时总数:9课时
课题:分数乘整数1课时上课时间:年月日
教材分析
这部分教材是在已学的整数乘法的意义和分数加法计算的基础上进行教学的。分数乘整数的意义和整数乘法的意义相同,只是这里变成了分数。因此,教材通过人跑一步相当于袋鼠跳一下的2/11。问人跑3步的距离是袋鼠跳一下的几分之几?这一情境来让学生理解什么样的问题可以用乘法来解决。在此基础上再进行分数乘整数的计算方法的学习。通过分数加法来进一步学习分数乘整数的计算方法。
学情分析
学生已学过整数乘法的意义,约分和分数加法计算。学生可以利用分数加法导出分数乘整数时只需把分子和整数相乘的积作分子,分母不变。在此基础上总结出分数乘整数的计算方法。学生在刚学习分数乘法时可能会有时想不到先约分。所以教师在教学时在这方面还要加以强调。
教学目标
1、使学生理解分数乘法的原型,掌握分数乘法的计算方法,能够正确地进行计算.
2、培养学生的计算能力。
3、激发学生学习兴趣,热爱学习数学。
教学过程备注
活动一:创设情境,初步理解分数乘法的原型
教师出示例1:人跑一步的距离相当于袋鼠跳一下的。人跑3步的距离是袋鼠跳一下的几分之几?
让学生审题后独立试做。
学生可能会出现以下两种做法:
(1)学生用连加法列式
(2)用乘法列式
借助于分数加法来理解理分数乘法的原型。
活动二:教学分数乘整数的计算方法
1、师:++和3都是求3步的距离是袋鼠跳一下的几分之几。你又都是怎样计算的呢?
全班交流,感觉分数乘整数的计算方法。
总结分数乘整数是怎样计算的:用分数的分子和整数相乘的积作分子,分母不变。
2、教学例2:6=
让学生试做,然后教师强调计算时能约分的可以先约分,再计算。教师板书。
活动三:反馈练习
1、完成9页中的做一做。
教师注意强调学生的书写格式以及能约分的要先约分。
注意体会在什么情况下用分数乘法来解决问题。
2、完成练习二中的1、2题。
活动四:质疑总结。
六年级数学上册分数乘法知识点 篇4
一、分数乘法
(一)分数乘法的意义和计算法则
1、分数乘整数的意义
2/11×3 表示: 求3个2/11是多少? 求2/11的3倍是多少?
2、分数乘整数的计算方法
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。(能约分的要先约分再乘)
3、一个数乘分数的意义:就是求这个数的几分之几是多少。3/5×1/4表示:求3/5的1/4是多少。
4、分数乘分数的的计算方法
分数乘分数,用分子乘分子,分母乘分母。(能约分的要先约分再乘)
(二)求一个数的几分之几是多少的问题
1、找单位“1”的方法
(1)是谁的几分之几,就把谁看作单位“1”。
(2)一般把“比”字、“是”字、“占”字、“相当于”后面的量看作单位“1”。
注意: 找单位“1”在分率句里找,有分率的句子称为分率句。
分率不带单位,具体数量带有单位。
2、求一个数的几倍、几分之几是多少,用乘法计算。
15的3/5是多少? 15×3/5=9
3、已知单位“1”用乘法计算
单位“1”×分率=分率的对应量
注意:(1) 乘上什么样的分率就等于什么样的数量。
(2) 乘上谁占的分率就等于谁的数量。
(3) 是谁的几分之几,就用谁乘上几分之几。
4、已知A比B多(或少)几分之几,求A的解题方法
5、积与因数的大小关系
大于1的数,积大于A。
A(0除外)乘上
小于1的数,积小于A。