《关于M2M移动通信网络架构研究【优秀6篇】》
《关于M2M移动通信网络架构研究【优秀6篇】》由精心整编,希望在【移动m2m】的写作上带给您相应的帮助与启发。
. M2M业务对现网架构的影响 1
从对现网架构的影响来说,M2M业务可以分为两类:A类是现有网络不能满足需要网络优化的业务,这类业务需要过载控制功能来避免网络过载,以及针对客户的业务需求提供差别化的服务;B类是对于现有网络影响较小的业务,这类业务是对时效性要求不高的MTC业务,而且这些业务和现在的移动网络业务有类似的需求。从整体来说,M2M业务中大部分是A类业务,以下分析的是A类业务对现网架构的影响[3]。
M2M业务的多样性、差异化,网络的多种接入方式,M2M终端的海量性、差异化,以及M2M业务表现出来的传统电信业务所不具有的各种特点,都对现网架构和网元设备产生了很大影响,其直接后果是现网的核心网元如HLR/PCRF/GGSN的能力已经不能满足M2M业务所带来的信令、流量冲击和业务控制需求,主要体现在以下方面:
(1)由于物联网业务的特殊性,可能会产生瞬时大量的信令,会对无线网络的关键信令控制设备(STP/HLR/PCRF)造成影响而导致全网的瘫痪。因此,一方面要大规模提高相关信令控制设备的容量或设备的信令处理能力;另一方面需要进行差异化、分优先级的接入控制;此外,关键信令控制和处理设备要具备一定的设备过载保护机制以及高容灾、高流控能力,避免关键网元的过载,从而有效提升整网的可靠性。
(2)由于物联网业务的特殊性,其接入方式的多样性,涉及行业及用户和设备的多样性、海量性,因此需要对用户数据管理HLR网元进行相应增强,包括其数据库的可扩展性和灵活性,除了标准的用户签约信息,还有设备序列号、设备驱动程序信息、位置信息和配额信息等运营商、M2M客户私有字段等;对多种接入类型的支持,可对由不同接入类型(2G/3G/LTE)接入网络的设备进行鉴权;对用户标识和寻址的灵活动态支持,支持一卡多号或一号多卡;支持对终端设备基本状态的查询,能通过网络侧下发终端“苏醒”请求,发现设备被盗时能够立刻锁死等。
(3)由于物联网业务的特殊性及多样性、群组性,因此有必要对业务进行区分,包括业务分类分级、QoS分级、用户分组、设备分组,从而进行流量管理和业务管理,根据忙闲时、地理位置等各种特性采取不同的接入和传输处理策略等。此外,在现网PCC架构中叠加物联网策略控制,因其特殊性,PCRF(Policy and Charging Rules Function,策略与计费规则功能)进行策略控制时需先判断是个人用户还是物联网用户,而且物联网数据的瞬时爆发性会影响现网PCC架构,所以有必要设置专用的物联网M2M PCRF。
总之,需要对相关网元进行能力的增强和升级,可以改造现有相关网元,也可以设置M2M的专用网元叠加在现有H2H网络上来解决相应问题。
. 引言 2
物物通信(M2M,Machine to Machine)是一种涉及一个或多个实体的不需要人为干预的数据通信, 随着M2M业务的快速发展,基于移动通信网络的MTC正日益成为一种主要的移动通信方式,但是传统移动通信网络毕竟是面向人人通信(H2H,Hu-man to human)业务设计的,适应H2H的业务需求,却不能满足M2M业务需求。具体来说,MTC和传统人人通信的不同之处包括以下方面[1]:
(1)基于MTC通信的应用场景比H2H通信的场景丰富很多,而且具有差异性。根据功能特性划分大致可归纳为位置感知和共享、环境信息感知、远程控制与执行、数据收集发布、视频监控、近场通信等。这些应用的差异化一方面表现为功能上的多样性;另一方面也体现在应用特征以及对网络的需求上的差异化。
(2)数据通信为主,包括小流量数据包、视频流等。
(3)要求MTC通信成本比H2H更低。由于M2M业务是在H2H业务之后发展起来的,最小化成本是M2M业务生存的重要考虑。不同的应用因其重要性不同,对通信的要求也是不同的,需要结合事件发生的可能性和需要付出的通信等综合成本来考虑进行成本的最小化。
(4)M2M终端数目巨大,需要更灵活和有策略的终端管理。潜在的海量M2M终端接入通信网络,而且M2M终端无论是从传输特性、QoS要求和移动性,还是从终端的分布密度方面,都与H2H终端有很大不同。
(5)以小数据量传输为主。
如果继续使用传统移动通信系统来进行MTC通信,其系统的效率、成本和适用性都无法达到最优。因此,在考虑M2M业务特征的同时减少对H2H业务的影响,从而设计MTC专用的通信系统,是当前物物通信不断发展背景下的一个重要课题。
. 3G网络阶段的M2M网络架构 3
在现有的3G网络阶段,为解决发展M2M业务面临的网络运营和网络资源问题,运营商可以通过采用物理上隔离的网络来单独承载机器通信业务,在初期可以通过核心网中专设的网元实现业务的隔离,在后期演进也可以延伸到采用专用的接入网实现物联网业务的接入隔离。此外,物联网管理平台也是物联网解决方案中必不可少的组成部分。物联网管理平台与物联网独立网元配合,在物联网业务发展的初期阶段主要实现物联网独立码号集中管理和物联网业务有效管控等功能。随着物联网的发展,平台的功能也会逐步支撑更多资源管控与更多的业务流程,并开放更多资源及能力。可以根据M2M业务的特性,实现基于位置、时间段、接入类型的QoS控制和相应的计费策略;还可以根据用户的属性及行为进行相应的分组,实行基于群组的流量统计、事件分发和策略执行等,这体现在核心网中PCRF/SPR/M2MSP的功能实现。综上所述,在3G发展阶段,M2M网络架构的特征具体体现在以下四个方面:
. 结语 4
M2M业务的多样性、差异化以及M2M业务表现出来的传统电信业务所不具有的各种特点,都对现网架构和网元设备产生了很大影响。本文在研究M2M业务特征及其对现网的影响和国际标准组织提出的网络体系架构的基础上,提出了在现有移动通信网络上部署具有可行性,又能一定程度上满足MTC业务应用需求的网络架构。
运营商发展M2M业务的基础与发展移动通信是一致的,在专用的M2M网络架构中,必须长远规划网络资源,根据业务发展实施网络优化和数据分流,加强平台建设,完善网络覆盖,加大网络容量,从根本上满足M2M业务需求,同时又不影响当前的人人通信业务,提高用户体验。
. 国际标准组织提出的M2M网络架构 5
国际标准组织如ITU、ETSI和3GPP等分别从不同角度提出了M2M的网络架构[4]。
根据ITU-T发布的定义,物联网体系架构主要可划分为三个层面:感知层、网络层和应用层。如图1所示,该架构基本达成业界共识,但是其体系架构过于抽象属于概念模型,在转化为技术实现的过程中还需要细化。
在ITU-T物联网体系架构的基础上,ETSI提出了一种可看作逻辑模型的M2M应用顶层架构[5]。如图2所示,ETSI把M2M体系架构划分为M2M设备及网关和M2M网络两个大域。M2M设备及网关域包括M2M设备、M2M网关和M2M局域网,可以基于现有的各类标准实现;M2M网络域则包括广域网和M2M应用系统。
相较于ITU的概念模型,ETSI的逻辑模型侧重于M2M服务能力层,通过对服务能力和接口的定义来实现屏蔽网络细节的M2M应用、M2M服务能力及网络三者之间的相互调用,可供在研究平台和网关设备功能及接口时参考。
在ETSI的体系架构基础上,3GPP也提出了一种支持MTC应用的通信架构。如图3所示,涉及到的实体包括MTC终端、承载网络、MTC服务器和MTC应用。其中,MTC服务器是MTC业务的管理平台;MTC应用负责业务逻辑的实现。承载M2M通信的移动网络包括GPRS、EPC以及短消息和IMS网络。
3GPP提出的MTC通信架构侧重于M2M网络层,对M2M网络中各通信网元的功能和接口进行了定义,其适用于研究MTC业务的管理平台以及M2M核心网络的功能和接口时参考。
以上标准组织虽然都提出了M2M的网络体系架构,但是有其局限性。ITU和ETSI的架构过于框架性,对于实际的网络部署没有较好的指导意义;3GPP虽然对于网络网元功能增强有一定的研究,但是由于目前部署的H2H网络大多处于R7或R8版本,而MTC网络体系的研究是在R10以上版本的网络基础上进行的。因此,在现有网络中按照标准来部署MTC网络还为时尚早,需要研究一种网络架构既具有在现有网络基础上投资和部署的可行性,又能满足现阶段MTC业务应用的需求。
. M2M业务特征分析 6
网络架构的设计,需要以网络所承载的具体业务为出发点[2]。也就是说,M2M网络架构的设计需要充分分析M2M业务特征和需求,结合终端上下行数据量、频度、QoS需求等方面的业务特征,将物联网应用分为如下五类。其中,对各类应用的部分需求和特征进行了分析,包括移动性、群组通信、鉴权以及按计划周期性处理等,不同场景间有较大差异。
(1)监控报警类:传感器本地监测数据,当发生不符合预期的数据变化时通过网络通知应用层进行报警。
平均数据传输速率:低,仅在某些触发条件下发送少量上行数据流量。
尖峰数据传输速率:不同场景间有较大差异,与应用需求确定的传输的数据内容有关。
QoS要求:不同场景间有较大差异,与应用需求以及当前数据所代表的含义有关。
数据安全要求:不同场景间有较大差异,与应用需求有关。
数据可靠传递要求:不同场景间有较大差异,与应用需求有关。
数据持续性:低,仅在发生预置的事件时存在短暂的或者持续时间较短的数据传输。
与人交互性:低,通常由系统根据预置处理方式自动处理。
对连接性的需求:需要监控连接性以防破坏或无效。
终端移动性:因无下行流量需求,所以无移动性需求。
举例:输血车血液环境监测;井盖监控;移动资产跟踪。
(2)数据收集类
平均数据传输速率
上行流量:中,数据量较大,持续的数据上报或者周期性数据上报;下行流量:低,更多的是用于修改上报规则等。
尖峰数据传输速率:不同场景间有较大差异,与应用需求确定的传输的数据内容有关。
QoS要求:不同场景间有较大差异,与应用需求以及当前数据所代表的含义有关。
数据安全要求:不同场景间有较大差异,与应用需求有关。
数据可靠传递要求:不同场景间有较大差异,与应用需求有关。
数据持续性:取决于数据传输间隔和传输方式的选择。[论文网]
与人交互性:低,通常由系统根据预置处理方式自动处理。
对连接性的需求:需要监控连接性以防破坏或无效。
终端移动性:因偶尔有下行数据,所以需要优化的移动性管理。
举例:气象信息监测;火灾现场数据收集;路况信息收集。
(3)信息推送类
平均数据传输速率
上行流量:通常较低,主要用于提供应用所需的过滤或输入条件(如位置信息);下行流量:通常较大,主要用于传递所推送的信息(如广告、视频媒体等),持续的、基于交互等外界条件出发的或者周期性的数据推送。
尖峰数据传输速率:具有明显的尖峰数据特征,在条件触发后下发匹配的信息。
QoS要求:不同场景间有较大差异,与应用需求以及当前数据所代表的含义有关。
数据安全要求:不同场景间有较大差异,与应用需求有关。
数据可靠传递要求:不同场景间有较大差异,与应用需求有关。
数据持续性:通常具有较长时间的持续性。
与人交互性:高,通常用户会做出反馈,系统根据反馈对推送的信息进行调整。
对连接性的需求:较强,需要维护网络连接以便于进行数据的正确传输。
终端移动性:两极分化。部分终端有很强的移动性;部分终端则通常不移动。
举例:智能博物馆等。
(4)视频监控类
平均数据传输速率
上行流量:高,主要用于传递所监控的多媒体数据;下行流量:低,主要用于传递控制和调节命令等。
尖峰数据传输速率:无明显的尖峰数据特征,数据传输通常维持一个相对稳定的传输速率。
QoS要求:不同场景间有较大差异,与应用需求有关。
数据安全要求:不同场景间有较大差异,与应用需求有关。
数据可靠传递要求:不同时刻有不同的要求。如在正常情况下要求适中,但一旦发生某些预置的事件则需要较高的可靠性传递。
数据持续性:通常具有长时间的持续性。
与人交互性:低,用户偶尔会对视频监控过程进行干预。
对连接性的需求:较强,需要维护网络连接以便于进行数据的正确传输。
终端移动性:两极分化。部分终端有很强的移动性;部分终端则通常不移动。
举例:家庭安防中的视频监控等。
(5)远程控制执行器类
平均数据传输速率
上行流量:通常较低,主要用于提供应用所需的过滤或输入条件(如预置事件的发生);下行流量:取决于控制对象和控制命令的复杂程度。
尖峰数据传输速率:通常具有明显的尖峰数据特征。
QoS要求:不同场景间有较大差异,与应用需求有关。
数据安全要求:不同场景间有较大差异,与应用需求有关。
数据可靠传递要求:要求较高,因涉及到控制过程是否能够正常实现。
数据持续性:通常具有长时间的持续性。
与人交互性:高,通常是对人操作指令的具体反映。
对连接性的需求:较强,需要维护网络连接以便于进行数据的正确传输。
终端移动性:两极分化。部分终端有很强的移动性;部分终端则通常不移动。
举例:工业自动化等。