《《正比例和反比例》教学反思优秀10篇》
作为一名人民老师,课堂教学是重要的工作之一,在写教学反思的时候可以反思自己的教学失误,怎样写教学反思才更能起到其作用呢?该页是美丽的编辑为大家收集整理的《正比例和反比例》教学反思优秀10篇,仅供借鉴,希望大家能够喜欢。
数学教案-正比例和反比例的比较 篇1
正比例
反比例
相同点
1.都有两种相关联的量.
2.一种量随着另一种量变化.
不同点
1.变化方向相同,一种量扩大或缩小,另一种量也扩大或缩小.
2.相对应的`每两个数的比值(商)是一定的.
1.变化方向相反,一种量扩大(缩小),另一种量反而缩小(扩大).
2.相对应的每两个数的积是一定的.
探究活动
灵活判断
活动目的
1.理解正反比例的意义.
2.能根据正反比例的意义,正确判断两种量是否成比例,成什么比例.
活动过程
1.教师出示思考题目:
(1)正方形的边长和面积是否成比例?
(2)圆的面积和半径是否成比例?
2.学生分小组讨论.
3.学生分小组汇报讨论结果.
4.师生共同小结并总结规律.
正比例教学反思 篇2
其实我们这部分的资料在五年级就已经学过了,只是没有告诉学生这样的两种量的变换规律就是成正比例。异常是我们在上学期学过了比的意义、比的化简与比的应用。联系比例A式子体会到生活中存在这很多像这样的变量关系。让学生体会生活中存在很多相关联的量,它们之间的关系有着共同之处,从而引导学生认识成正比例的量。
课堂上我设计了情境:当单价必须时,总价与数量的变化关系。先让学生观察数量是怎样变化的,再看总价又是怎样变化的。引导学生观察并思考:当数量发生变化时,总价怎样变化;之后一个情境则是,购买同一种苹果(也就是当单价必须时),应付的钱数与购买的苹果质量之间的关系。引导学生认识到:当速度必须时,路程随时间的变化而变化,在变化的过程中路程与时间的比值相同;当单价必须时,应付的钱数随购买数量的变化而变化,在变化过程中应付的钱数与质量的比值相同。让学生总结出:
1、两种变量是不是相关联的量;
2、在变化的过程中,这两种量比值是否必须。
正比例教学反思 篇3
授完了“成正比例的量”这部分资料之后,我有以下感受:
1、小学生学习数学就应是生活中的数学,是学生自我的数学。
数学来源于生活,又务必回归于生活。数学只有在生活中才能赋予其活力与灵性。数学的教与学就应联系生活,注重现实体验,变传统的“书本中学”为“生活中做数学“。本节课一开始我就联系学生生活实际,让学生找一找生活中遇到的数量,学生兴趣高涨,一下举出了许多的实例,之后我又让学生找一找一种量变化,另一种量也随之变化的例子,学生又开动脑筋,争先恐后地抢着说,让学生明确了我们这天要学习的新知识和生活的联系是如此的密切。在教学正比例的好处时,又让学生找一找生活中成正比例的例子,让学生再一次感受到生活处处有数学。
2、重视学法指导,为新知建构铺路搭桥
学生理解正比例的好处并不难,但是根据正比例的好处去决定两种量成不成比例关系就很难,因此我在教学时,为了突破难点有意设计了一组决定题,涵盖了学生可能会碰到的几种状况。学生独立完成后,再引导学生思考你在做这种题时可能会碰到哪几种状况,就应如何去思考,指导学生学会反思,举一反三。使学生透过解决具体问题抽象概括、构成普遍方法,指导他们及时反思,在回顾反思中理清思路,不断提升思维的层次。
3、让学生在探索、分析、理解中学习数学
本节课新知识的学习不是由老师灌输的,而是学生自我观察、讨论分析、发现规律。我为了给学生自主发现知识的平台,带给给学生几个讨论交流的问题,激发学生探究的欲望,给学生足够的独立思考空间,提高学生的自主学习潜力。学生参与了知识的构成过程,体验到数学学习的乐趣。
4、在观察中思考
小学生学 习数学是一个思考的过程,“思考”是学生学习数学认知过程的本质特点,是数学的本质特征,能够说,没有思考就没有真正的数学学习。本课教学中,我注意把思考贯穿教学的全过程。例如:我让学生完成表格之后,思考你得到了什么信息?然后思考下方的问题:统计表中有哪几种量?哪种是变化的量,哪种是不变的量?体积和高度这两种变化的量具有什么特征?这样让学生着重去寻找表中的规律。在学生深入观察、独立思考、合作交流后,必会发现表中的两个量变化规律。这样让全体学生在观察中思考、在思考中探索、在探索中获得新知,大大地提高了学生学习的效率。
另外,由于事例熟悉,且数据计算起来很简单,便于学生口算,学生学习时能将更多的时光和精力用于思考这两种量的变化规律上,进而便于提示正比例的好处。
5、不足之处
(1)在练习方面,学生找不到哪些数量成正比例时应让学生讨论,每个正比例关系都应让学生互相说一说,这样或许会懂得更多。
(2)由于本节课所学资料比较抽象,难以理解,所以教学节奏有点慢,导致后面的练习不够充分。
《正比例函数》教学反思 篇4
《正比例函数》是中学教学中非常重要的内容,是学生第一次学习数形结合,正比例函数是一次函数的特例,是学生第一次涉及到一个具体的函数的学习和研究,也是初中数学中的一种简单最基本的函数,是后面学习一次函数的基础。
本节课中,我收集了生活中的一些实际应用的例子,引导学生用数学的眼光从生活中捕捉数学问题,主动地运用数学知识分析生活现象,自主地解决生活中的实际问题。
在教师的情景诱导下使学生快速进入到本节课内容当中,通过问题式的探究,使学生自己研究和小组的探索、讨论来解决问题,再通过学生的展示、教师的点拨、总结进行知识归纳,然后老师再出变式练习,检测学生在本节课还有哪些方面的问题,以及使学生能力得到进一步提升。最后让学生总结本节课学到了什么,还有那些困惑。整堂课学生发现,探索,质疑,实践,归纳,练习,环环相扣,严谨有序,通过练习检测学生学习情况,效果良好。不足之处教师讲解引导多,没有真正把课堂给学生。
正比例教学反思 篇5
星期五我上了研究课《正比例》,本课是在学生学习了变化的量之后的一个内容,通过学习,使学生理解正比例的意义,会正确判断成正比例的量,并能根据特点解决生活中的一些简单问题。根据教材的内容和特点,我试采用永威的“先教后学,当堂检测”的模式,实验后感觉孩子们不会自学,当自学指导出示后,都在那等结果,所以我认为应在课堂中逐步培养学生的自主学习能力。
一、复习旧知,引入课题
课前,我先提问学生:“什么是相关联的量,谁能举个例子说一说?”学生很快说出“时间、路程、速度”之间的关系、“总价、数量、单价”的关系等等。由此我导入了新课:这节课我们要以一种新的观点来继续深入研究这些数量之间的关系。这样的导入就为下面的新授进行了有效的铺垫。
二、自主探究,学习新知。
出示例1表格,让学生观察并说说所获得的信息。首先,要让学生弄清什么叫“两种相关联”的量。我引导学生从表格中去发现时间和路程两种量的变化情况,在变化中发现:路程随着时间的变化而变化的,同时引导学生初步感知成正比例的两种量的变化方向性。其次,我进一步引导学生考虑:路程随着时间的变化而变化,在这一变化过程中,有什么规律呢?让学生试着写出几组行驶的路程和它所对应的。时间的比的比值,发现它们比值是一样的,都是80。接着就追问:“这里的80表示什么?”学生很快回答出是“速度”,于是我就顺势揭示了“路程和它所对应的时间的比的比值一定时,路程就和时成正比例,路程和时间是成正比例的量。”这样就很好的解决了本课的难点。接着让学生做书上的“试一试”,用刚才所学的知识来判断总价和数量是否成正比例。学生很好的解决了这一问题。然后让学生对例1和“试一试”进行比较,发现都有这样共同的特点:“都有两个相关联的变量,两个量的比的比值都是一定的,这两个量都是成正比例”,引出了用字母来表示正比例Y:X=K(一定),Y和X成正比例。
三、巩固拓展,深化提高。
理清了新知识的知识脉络后,就要进行相应的练习,让学生来判断两种量是不是成正比例,要求学生独立思考、认真分析,并要能说出判断的理由,这样既巩固了新知,又锻炼了学生的语言表达能力。
一节课下来,学生在自主探究中得出了规律,学习效果很好,并且能够体验到了学习的快乐。而我也深深的体会到在教学过程中就应该“该放手时就放手”。
正比例和反比例的比较教学设计 篇6
正比例和反比例的比较教学设计
教学目标:
⒈知识技能目标:
⑴通过比较,进一步加深理解正比例和反比例的意义和特点,体会它们的联系与区别;
⑵掌握正比例和反比例的变化规律;
⑶在练习中进一步提高分析、比较、抽象、概括等能力。
⒉过程性目标:
⑴在交流讨论中完善自己判断正、反比例关系的经验认识,掌握判断正、反比例关系的方法,形成接近自动化技能的判断策略;
⑵通过数“形”结合,进一步感受和领会正、反比例关系的'变化规律及特点,进一步渗透函数思想,为今后中学的学习打下基础。
⒊情感态度目标:
⑴体会借助图像对事物发展方向推断的作用,逐步养成用数学的眼光来分析问题的习惯;
⑵逐步增强数学学习的自信心,体验当独立思考解决不了问题时,与他人合作的成就感,逐步增强团队精神。
教学过程:
一、复习导入
⒈揭示课题
师:老师知道同学们前两天已经学习了正比例和反比例意义。
谁来说一说正比例和反比例的意义。(板书:正比例和反比例)
⒉出示练习九第1题
师:我们来用正比例和反比例的意义判断几道题?说说你的理由。
二、教学新课
⒈教学例7
⑴出示例7两个表,学生自学,并回答相关问题。
师:为什么左表相关联的两种量成正比例关系?为什么右表相关联的两种量成反比例关系?
⑵小结。
⑶师:我们已经知道,路程、速度和时间这三个量存在相依关系,根据这两个表我们可以用什么样的关系式来表示它们之间的相依关系呢?(根据学生的回答板书)
⑷师:在这里,当速度一定时,路程和时间成什么比例关系?为什么?
当路程一定时,速度和时间成什么比例关系?为什么?
请你推想一下,如果当时间一定时,路程和速度成什么比例关系呢?为什么?
你能用关系式来表示吗?(根据学生的回答板书)
⑸小结。
⑹练习
①做“练一练”第1题
师:你能用关系式来表示这题里三个量之间的相依关系吗?
(根据学生的回答出示关系式)
②做“练一练”第2题
师:你能分别用数量关系式来表示吗?(根据学生的回答出示关系式)
⑺小结。
⑻总结判断策略
①师:同学们,学到这儿相信大家已经有了不少判断两种量是不是成比例的经验了,接下来请你们在小组里交流一下自己的经验,再听听别人的经验好吗?
②小组活动讨论交流
③各小组汇报交流结果
④根据学生的回答板书
⑤师:谁能再来说一说判断两种量是不是成比例时怎么办?
⑥小结:当我们判断两种相关联的量是成正比例还是成反比例的时候关键是看?
⑼练习
①做练习九第2题
师:你是怎样判断的?
②出示练习九第7题
⒉用图表示例7中两种量的关系
⑴出示例7的两个表
师:两种量成正比例关系和反比例关系的变化规律,也可以用图来表示。我们先来研究怎样将正比例关系用图来表示。
⑵出示空图,引领学生识图
⑶根据表里的数据描点
⑷出示空图,引领学生识图
师:我们再来研究怎样将反比例关系用图来表示。
⑸根据表里的数据描点
⑹正、反比例图比较
师:用图来表示正、反比例,你看了有什么感觉?
⑺练习:做练习九第8题
⒊总结正、反比例的特点
师:通过我们这堂课的研究和学习,你们说说成正比例关系和成反比例关系的相同点和不同点吗?
⑴小组讨论交流
⑵汇报交流结果,完成表格。
三、课堂小结
师:今天我们不仅进一步认识了正比例和反比例的意义,还对它们进行了比较,(补充完整课题:的比较)通过今天的学习,你学到了什么?你觉得怎样判断两种量是否成比例?判断相关联的两种量成正比例还是反比例的关键是什么?
板书设计:
正比例教学反思 篇7
“正比例意义”的教学,是在学生掌握了比例的意义和基本性质的基础上进行教学的,着重使学生理解正比例的意义。正、反比例知识,资料抽象,学生难以理解。学好正比例知识是学习反比例知识的基础。所以,使学生正确的理解正比例的意义是本节课的重点。正反比例关系是比较重要的一种数量间的关系,准确地把握这一关系的确定方法十分重要。
新的数学课程标准提倡:引导学生以自主探索与合作交流的方式理解数学,解决问题。在本课的设计中,我本着“以学生为主体”的思想,首先给了学生充分的自学时间,后让学生采取同桌两人互相说说的`方式交流,在小组里进行合作讨论,最终在全班交流时给了学生一些较为形象具体的表格形式进行比较、分析,从而让学生能轻易地发现两个数量间的变化关系。经过教学,我有以下几点反思:
一、让学生的大脑动起来。
小学生学习数学是一个思考的过程,“思考”是学生学习数学认知过程的本质特点,是数学的本质特征,能够说,没有思考就没有真正的数学学习。本课教学中,我注意把思考贯穿教学的全过程,在自学提示中,围绕正比例的意义的理解给学生足够的思考空间,将提纲资料简单化、重点化,让全体学生在观察中思考、在思考中探索、在探索中获得新知,大大地提高了学习的效率。
二、让小组合作真正更有效。
新的数学课程标准提倡:引导学生以自主探索与合作交流的方式理解数学,解决问题。本课的教学中,在学生自学的基础上,让学生将自学中不能理解的问题进行小组交流,因为本课时的教学资料难度相比较较大,所以我给小组活动空出了足够的时间,让学生在小组活动中真正到达思维层次上的交流,而不仅仅限于表面上的讨论。事实证明,在本节课资料的教学中,小组交流发挥了很大的作用。也努力做到:学生自己能学的自己学,自己能做的自己做,培养合作互动的精神,从而到达互助。
三、经过练习来检验学生的学习效果。
为了及时巩固新知识,我由易到难设计了大容量的练习,以便让学生将所学资料在练习中得到加深理解和巩固。经过练习,学生的思维得到了提高;对正比例的意义理解也加深了认识。
在教学正反比例意义时还是有很多不尽如人意的地方。这堂课,对教材中几个概念,在理解上仍存在一些问题。比如,什么样的两种量叫做相关量的两种量,课本上的概念是:一种量变化,另一种量也随着变化。那么一个人的身高和体重算不算两种相关联的量,能够说从必须程度上或多或少有点相关,可是在必须程度上又不相关,比如人到长大以后开始发胖,身高不变,体重变化,这又这么说所以,我觉得自己在教材的钻研方面,还应多探索,多下功夫。
正比例教学反思 篇8
学生在上学期已经学过比的好处、比的化简与比的应用。在上一节课也体会了生活中存在的变量之间的关系,这些都为学生学习正比例奠定了基础。学生理解正比例的好处时比较困难,为此,我密切联系学生已有的生活经验和学习经验,设计了一系列情境,让学生体会生活中存在超多相关联的量,它们之间的关系有着共同之处,从而引导学生认识成正比例的量以及明确正比例在实际生活中的广泛应用。
课堂上我设计了正方形的周长与边长、面积与边长的变化关系。透过表格、图像、表达式的比较,使学生体会到虽然正方形的周长和面积都随边长的增加而增加,但正方形的周长与边长、面积与边长的变化规律并不相同。同时,也让学生初步感知“在变化过程中,正方形的周长与边长的比值必须”,为认识正比例奠定基础。之后,我给学生带给第二个情境:当速度必须时,汽车行驶的路程与时光的变化关系。教学时,我先让学生把汽车行驶的时光和路程表填完整,引导学生观察并思考:当时光发生变化时,路程怎样变化;第三个情境则是,购买同一种苹果(也就是当单价必须时),应付的钱数与购买的苹果质量之间的关系。
透过以上实例,引导学生认识到:当速度必须时,路程随时光的变化而变化,在变化的过程中路程与时光的比值相同;当单价必须时,应付的钱数随购买苹果的质量的变化而变化,在变化过程中应付的钱数与质量的比值相同。在此基础上,让学生透过比较,概括出以上实例的共同点,引出“正比例”的好处。最后,透过小结、练习让学生总结出决定两种量是否成正比例的依据:
1、两种变量是不是相关联的量;
2、在变化的过程中,这两种量比值是否必须。
在巩固练习题中我让学生超多的复习了常见的数量关系。对于一些学生较容易出现错误的题目进行重点的讲解。例:圆柱的底面积必须,体积与高成什么比例;圆的周长与半径成正比例;圆的面积与半径是否成比例;人的身高与年龄是否成比例;一瓶矿泉水,喝掉的和瓶里剩下的水是否成比例……等等。
但是在教学中同样也感觉到,由于这个概念比较长,所以对于学生来说这个好处记忆下来是比较困难的,个性是对一些学习困难的学生。所以我也教给学生必须的方法,抓住句中的重点,透过理解来记忆。让学生透过相互之间说,前后同桌检查,到达对该概念的熟练叙述。
六年级下册二单元《正比例和反比例》教学反思 篇9
更多资源
其二为今后对函数进一步的学习做准备我们再来看一看函数课程的发展链。
小学:数的认识,图形数量找规律,数的`计算,图形周长和面积,字母表示数—变量,统计—变量,商不变的性质—常函数,正反比例—函数。
初中:一次函数,二次函数,正反比例函数,函数概念的初步认识。
高中:函数概念的映射定义。一些具体函数模型—简单幂函数及其拓展,实际函数的模型——分段函数,指数函数,对数函数,三角函数,数列,函数思想的广泛应用。
到了大学还在继续着对函数的学习,可以看出小学阶段的只是对函数的最初级的最浅显的认识,但却影响着孩子今后对函数的学习。从多方面理解变化的量,打破了思维的局限,利于今后函数概念正确的建立。
正比例教学反思 篇10
正比例的教学,是在学生掌握了比例的好处和基本性质的基础上进行教学的,着重使学生理解正比例的好处。我在教学时首先细致安排学生初步感知,透过让学生写出路程与时光的比,求比值,找规律,写数量关系,让学生初步感知正比例的要点。第二,仅有例题的首次感知学生还不能构成正比例的概念,所以,我变换情境,选取与例题不一样的'数量:铅笔的数量和总价,耕地的时光和耕地总公顷数。让学生反复感知正比例概念的规律。这样既拓展了教材,又进一步增加了学生的感性认识。为学生高度概括正比例概念打下了基础。第三有了前面充分的感性认识,我提出几个问题,引导学生有序的思考,以小组合作交流的形式,让学生进一步突破正比例概念中的一些关键词,如:相关联的量,相对应的数,比值等,学生在合作学习时互相交流,互相讨论,把各自对正比例概念的感知会聚,综合,从而抽象出正比例的好处是:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值必须,这两种量就叫做成正比例的量。