《高一数学必修一优秀教案(优秀7篇)》
作为一位不辞辛劳的人民教师,常常要根据教学需要编写教案,教案是教学活动的依据,有着重要的地位。那么应当如何写教案呢?下面是小编精心为大家整理的高一数学必修一优秀教案(优秀7篇),如果对您有一些参考与帮助,请分享给最好的朋友。
高一数学集合教案 篇1
教学目标:
1、使学生理解集合的含义,知道常用集合及其记法;
2、使学生初步了解属于关系和集合相等的意义,初步了解有限集、无限集、空集的意义;
3、使学生初步掌握集合的表示方法,并能正确地表示一些简单的集合。
教学重点:
集合的含义及表示方法。
教学过程:
一、问题情境
1、情境。
新生自我介绍:介绍家庭、原毕业学校、班级。
2、问题。
在介绍的过程中,常常涉及像家庭、学校、班级、男生、女生等概念,这些概念与学生相比,它们有什么共同的特征?
二、学生活动
1、介绍自己;
2、列举生活中的集合实例;
3、分析、概括各集合实例的共同特征。
三、数学建构
1、集合的含义:一般地,一定范围内不同的、确定的对象的全体组成一个集合。构成集合的每一个个体都叫做集合的一个元素。
2、元素与集合的关系及符号表示:属于,不属于。
3、集合的表示方法:
另集合一般可用大写的拉丁字母简记为集合A、集合B.
4、常用数集的记法:自然数集N,正整数集N*,整数集Z,有理数集Q,实数集R.
5、有限集,无限集与空集。
6、有关集合知识的历史简介。
四、数学运用
1、例题。
例1 表示出下列集合:
(1)中国的直辖市;(2)中国国旗上的颜色。
小结:集合的确定性和无序性
例2 准确表示出下列集合:
(1)方程x2―2x-3=0的解集;
(2)不等式2-x0的解集;
(3)不等式组 的解集;
(4)不等式组 2x-1-33x+10的解集。
解:略。
小结:(1)集合的表示方法列举法与描述法;
(2)集合的分类有限集⑴,无限集⑵与⑶,空集⑷
例3 将下列用描述法表示的集合改为列举法表示:
(1){(x,y)| x+y = 3,x N,y N }
(2){(x,y)| y = x2-1,|x |2,x Z }
(3){y| x+y = 3,x N,y N }
(4){ x R | x3-2x2+x=0}
小结:常用数集的记法与作用。
例4 完成下列各题:
(1)若集合A={ x|ax+1=0}=,求实数a的值;
(2)若-3{ a-3,2a-1,a2-4},求实数a.
小结:集合与元素之间的关系。
2、练习:
(1)用列举法表示下列集合:
①{ x|x+1=0};
②{ x|x为15的正约数};
③{ x|x 为不大于10的正偶数};
④{(x,y)|x+y=2且x-2y=4};
⑤{(x,y)|x{1,2},y{1,3}};
⑥{(x,y)|3x+2y=16,xN,yN}。
(2)用描述法表示下列集合:
①奇数的集合;②正偶数的集合;③{1,4,7,10,13}
五、回顾小结
(1)集合的概念集合、元素、属于、不属于、有限集、无限集、空集;
(2)集合的表示列举法、描述法以及Venn图;
(3)集合的元素与元素的个数;
(4)常用数集的记法。
高一数学教案 篇2
教学目标:①掌握对数函数的性质。
②应用对数函数的性质可以解决:对数的大小比较,求复
合函数的定义域、值 域及单调性。
③ 注重函数思想、等价转化、分类讨论等思想的渗透,提高
解题能力。
教学重点与难点:对数函数的性质的应用。
教学过程设计:
⒈复习提问:对数函数的概念及性质。
⒉开始正课
1 比较数的大小
例 1 比较下列各组数的大小。
⑴loga5.1 ,loga5.9 (a>0,a≠1)
⑵log0.50.6 ,logЛ0.5 ,lnЛ
师:请同学们观察一下⑴中这两个对数有何特征?
生:这两个对数底相等。
师:那么对于两个底相等的对数如何比大小?
生:可构造一个以a为底的对数函数,用对数函数的单调性比大小。
师:对,请叙述一下这道题的解题过程。
生:对数函数的单调性取决于底的大小:当0
调递减,所以loga5.1>loga5.9 ;当a>1时,函数y=logax单调递
增,所以loga5.1
板书:
解:Ⅰ)当0
∵5.1loga5.9
Ⅱ)当a>1时,函数y=logax在(0,+∞)上是增函数,
∵5.1<5.9 ∴loga5.1
师:请同学们观察一下⑵中这三个对数有何特征?
生:这三个对数底、真数都不相等。
师:那么对于这三个对数如何比大小?
生:找“中间量”, log0.50.6>0,lnЛ>0,logЛ0.51,
log0.50.6<1,所以logЛ0.5 板书:略。 师:比较对数值的大小常用方法:①构造对数函数,直接利用对数函 数 的单调性比大小,②借用“中间量”间接比大小,③利用对数 函数图象的位置关系来比大小。 2 函数的定义域, 值 域及单调性。 [三维目标] 一、知识与技能: 1、巩固集合、子、交、并、补的概念、性质和记号及它们之间的关系 2、了解集合的运算包含了集合表示法之间的转化及数学解题的一般思想 3、了解集合元素个数问题的讨论说明 二、过程与方法 通过提问汇总练习提炼的形式来发掘学生学习方法 三、情感态度与价值观 培养学生系统化及创造性的思维 [教学重点、难点]:会正确应用其概念和性质做题 [教 具]:多媒体、实物投影仪 [教学方法]:讲练结合法 [授课类型]:复习课 [课时安排]:1课时 [教学过程]:集合部分汇总 本单元主要介绍了以下三个问题: 1,集合的含义与特征 2,集合的表示与转化 3,集合的基本运算 一,集合的含义与表示(含分类) 1,具有共同特征的对象的全体,称一个集合 2,集合按元素的个数分为:有限集和无穷集两类 1.1.2集合的表示方法 一、教学目标: 1、集合的两种表示方法(列举法和特征性质描述法)。 2、能选择适当的方法正确的表示一个集合。 重点:集合的表示方法。 难点:集合的特征性质的概念,以及运用特征性质描述法表示集合。 二、复习回顾: 1、集合中元素的特性:______________________________________. 2、常见的数集的简写符号:自然数集 整数集 正整数集 有理数集 实数集 三、知识预习: 1. ___________________________________________________________________________ ____________________________________________________________________叫做列举法; 2. _______________________ ____________________________________________________叫做集合A的一个特征性质。 ___________________________________________________________________________________ 叫做特征性质描述法,简称描述法。 说明:概念的理解和注意问题 1. 用列举法表示集合时应注意以下5点: (1) 元素间用分隔号, (2) 元素不重复; (3) 不考虑元素顺序; (4) 对于含有较多元素的集合,如果构成该集合的元素有明显规律,可用列举法,但必须把元素间的规律显示清楚后方能用省略号。 (5) 无限集有时也可用列举法表示。 2. 用特征性质描述法表示集合时应注意以下6点; (1) 写清楚该集合中元素的代号(字母或用字母表达的元素符号); (2) 说明该集合中元素的性质; (3) 不能出现未被说明的字母; (4) 多层描述时,应当准确使用且和或 (5) 所有描述的内容都要写在集合符号内; (6) 用于描述的'语句力求简明,准确。 四、典例分析 题型一 用列举法表示下列集合 例1 用列举法表示下列集合 (1)A={x N|0 变式训练:○1课本7页练习A第1题。 ○2课本9页习题A第3题。 题型二 用描述法表示集合 例2 用描述法表示下列集合 (1){-1,1} (2)大于3的全体偶数构成的集合 (3)在平面 内,线段AB的垂直平分线 变式训练:课本8页练习A第2题、练习B第2题、9页习题A第4题。 题型三 集合表示方法的灵活运用 例3 分别判断下列各组集合是否为同一个集合: (1)A={x|x+32} B={y|y+32} (2) A={(1,2)} B={1,2} (3) M={(x,y)|y= +1} N={y| y= +1} 变式训练:1、集合A={x|y= ,x Z,y Z},则集合A的元素个数为( ) A 4 B 5 C 10 D 12 2、课本8页练习B第1题、习题A第1题 例4 已知集合A={x|k -8x+16=0}只有一个元素,试求实数k的值,并用列举法表示集合A. 作业:课本第9页A组第2题、B组第1、2题。 限时训练 1. 选择 (1)集合 的另一种表示法是( B ) A. B. C. D. (2) 由大于-3小于11的偶数所组成的集合是( D ) A. B. C. D. (3) 方程组 的解集是( D ) A. (5, 4) B. C. (-5, 4) D. (5,-4) (4)集合M= (x,y)| xy0, x , y 是( D ) A. 第一象限内的点集 B. 第三象限内的点集 C. 第四象限内的点集 D. 第二、四象限内的点集 (5)设a, b , 集合 1,a+b, a = 0, , b , 则b-a等于( C ) A. 1 B. -1 C. 2 D. -2 2. 填空 (1)已知集合A= 2, 4, x2-x , 若6 ,则x=___-2或3______. (2)由平面直角坐标系内第二象限的点组成的集合为__ __. (3)下面几种表示法:○1 ;○2 ; ○3 ; ○4(-1,2);○5 ;○6 . 能正确表示方程组 的解集的是__○2__○5_______. (4) 用列举法表示下列集合: A= =___{0,1,2}________________________; B= =___{-2,-1,0,1,2}________________________; C= =___{(2,0), (-2,0),(0,2),(0,-2)}___________. (5) 已知A= , B= , 则集合B=__{0,1,2}________. 3. 已知集合A= , 且-3 ,求实数a. (a= ) 4. 已知集合A= . (1) 若A中只有一个元素,求a的值;(a=0或a=1) (2)若A中至少有一个元素,求a的取值范围;(a1) (3)若A中至多有一个元素,求a的取值范围。(a=0或a1) 教学目标: 1、理解集合的概念和性质。 2、了解元素与集合的表示方法。 3、熟记有关数集。 4、培养学生认识事物的能力。 教学重点: 集合概念、性质 教学难点: 集合概念的理解 教学过程: 1、定义: 集合:一般地,某些指定的对象集在一起就成为一个集合(集)。元素:集合中每个对象叫做这个集合的元素。 由此上述例中集合的元素是什么? 例(1)的元素为1、3、5、7, 例(2)的元素为到两定点距离等于两定点间距离的点, 例(3)的元素为满足不等式3x—2>x+3的实数x, 例(4)的元素为所有直角三角形, 例(5)为高一·六班全体男同学。 一般用大括号表示集合,{?}如{我校的篮球队员},{太平洋、大西洋、印度洋、北冰洋}。则上几例可表示为?? 为方便,常用大写的拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (1)确定性;(2)互异性;(3)无序性。 3、元素与集合的'关系:隶属关系 元素与集合的关系有“属于∈”及“不属于?(?也可表示为)两种。如A={2,4,8,16},则4∈A,8∈A,32?A。 集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集A记作a?A,相反,a不属于集A记作a?A(或) 注:1、集合通常用大写的拉丁字母表示,如A、B、C、P、Q?? 元素通常用小写的拉丁字母表示,如a、b、c、p、q?? 2、“∈”的开口方向,不能把a∈A颠倒过来写。 4 注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0。 (2)非负整数集内排除0的集。记作N__或N+ 。Q、Z、R等其它数集内排除0 的集,也是这样表示,例如,整数集内排除0的集,表示成Z__ 请回答:已知a+b+c=m,A={x|ax2+bx+c=m},判断1与A的关系。 高一数学学习方法归纳 【一、及时回忆】 如果等到把课堂内容遗忘得差不多时才复习,就几乎等于重新学习,所以课堂学习的新知识必须及时复习。 可以一个人单独回忆,也可以几个人在一起互相启发,补充回忆。一般按照教师板书的提纲和要领进行,也可以按教材纲目结构进行,从课题到重点内容,再到例题的每部分的细节,循序渐进地进行复习。在复习过程中要不失时机整理笔记,因为整理笔记也是一种有效的复习方法。 【二、重复巩固】 即使是复习过的内容仍须定期巩固,但是复习的次数应随时间的增长而逐步减小,间隔也可以逐渐拉长。可以当天巩固新知识,每周进行周小结,每月进行阶段性总结,期中、期末进行全面系统的学期复习。从内容上看,每课知识即时回顾,每单元进行知识梳理,每章节进行知识归纳总结,必须把相关知识串联在一起,形成知识网 络,达到对知识和方法的整体把握。 【三、合理安排】 复习一般可以分为集中复习和分散复习。实验证明,分散复习的效果优于集中复习,特殊情况除外。分散复习,可以把需要识记的材料适当分类,并且与其他的学习或娱乐或休息交替进行,不至于单调使用某种思维方式,形成疲劳。分散复习也应结合各自认知水平,以及识记素材的特点,把握重复次数与间隔时间,并非间隔时间越长越好,而要适合自己的复习规律。 【四、突破重点难点】 对所学的素材要进行分析、归类,找出重、难点,分清主次。在复习过程中,特别要关注难点及容易造成误解的问题,应分析其关键点和易错点,找出原因,必要时还可以把这类问题进行梳理,记录在一个专题本上,也可以在电脑上做一个重难点“超市”,可随时点击,进行复习。 【五、效果检测】 随着时间的推移,复习的效果会产生变化,有的淡化、有的模糊、有的不准确,到底各环节的内容掌握得如何,需进行效果检测,如:周周练、月月测、单元过关练习、期中考试、期末考试等,都是为了检测学习效果。检测时必须独立,完成,保证检测出的效果的真实性,如果存在问题,应该找到错误的根源,并适时采取补救措施进行校正。目前市场上练习册多如牛毛,请在老师的指导下选用。 高中数学考试的技巧 总体原则 1、先做简单题,后做难题。 2、遇到较难的大题,把所有跟该题有关的知识点都写出来,要知道数学讲究步骤分。 3、若是证明题,万一不会,可以先写出已知条件,再写出要证明的最后一步,再一步一步往上推,中间步骤随便写点。(使用于粗心的教师,但我们不提倡,重点是要平时学好)。 一、整体把握、抓大放小 拿到试卷后可以先快速浏览一下所有题目,根据积累的考试经验,大致估计一下每部分应该分配的时间。对于能够很快做出来的题目,一定要拿到应得的分数。 二、确定每部分的答题时间 1、考试时占用了很多时间却一点也没有做出来的题目。对于这类题目,你以后考试时就应该尽量减少时间,或者放弃,等以后学习进阶了再尝试着做。 2、考试时花了过多的时间才做出来的题目。对于这类题目,你以后平时做题时要尽量加快速度,或者通过“反复训练”等提高反应速度,这样,你下次考试时能用较少的时间做出来。 三、碰到难题时 1、你可以先用“直觉”最快的找到解题思路; 2、如果“直觉”不管用,你可以联想以前做过的类似的题目,从而找到解题思路; 3、如果这样也不行,你可以猜测一下这道题目可能涉及到的知识点和解题技巧。 4、对于花了一定时间仍然不能做出来的题目,要勇于放弃。 四、卷面整洁、字迹清楚、注意小节 做到卷面整洁、字迹清楚,把标点、符号、解题步骤等小的地方尽量做好,不要丢掉应得的每一分。 学 习 目 标 1明确空间直角坐标系是如何建立;明确空间中任意一点如何表示; 2 能够在空间直角坐标系中求出点坐标 教 学 过 程 一 自 主 学 习 1平面直角坐标系建立方法,点坐标确定过程、表示方法? 2一个点在平面怎么表示?在空间呢? 3关于一些对称点坐标求法 关于坐标平面 对称点 ; 关于坐标平面 对称点 ; 关于坐标平面 对称点 ; 关于 轴对称点 ; 关于 对轴称点 ; 关于 轴对称点 ; 二 师 生 互动 例1在长方体 中, , 写出 四点坐标 讨论:若以 点为原点,以射线 方向分别为 轴,建立空间直角坐标系,则各顶点坐标又是怎样呢? 变式:已知 ,描出它在空间位置 例2 为正四棱锥, 为底面中心,若 ,试建立空间直角坐标系,并确定各顶点坐标 练1 建立适当直角坐标系,确定棱长为3正四面体各顶点坐标 练2 已知 是棱长为2正方体, 分别为 和 中点,建立适当空间直角坐标系,试写出图中各中点坐标 三 巩 固 练 习 1 关于空间直角坐标系叙述正确是( ) A 中 位置是可以互换 B空间直角坐标系中点与一个三元有序数组是一种一一对应关系 C空间直角坐标系中三条坐标轴把空间分为八个部分 D某点在不同空间直角坐标系中坐标位置可以相同 2 已知点 ,则点 关于原点对称点坐标为( ) A B C D 3 已知 三个顶点坐标分别为 ,则 重心坐标为( ) A B C D 4 已知 为平行四边形,且 , 则顶点 坐标 5 方程 几何意义是 四 课 后 反 思 五 课 后 巩 固 练 习 1 在空间直角坐标系中,给定点 ,求它分别关于坐标平面,坐标轴和原点对称点坐标 2 设有长方体 ,长、宽、高分别为 是线段 中点分别以 所在直线为 轴, 轴, 轴,建立空间直角坐标系 ⑴求 坐标; ⑵求 坐标; 三角函数的周期性 一、学习目标与自我评估 1 掌握利用单位圆的几何方法作函数 的图象 2 结合 的图象及函数周期性的定义了解三角函数的周期性,及最小正周期 3 会用代数方法求 等函数的周期 4 理解周期性的几何意义 二、学习重点与难点 “周期函数的概念”, 周期的求解。 三、学法指导 1、 是周期函数是指对定义域中所有 都有 ,即 应是恒等式。 2、周期函数一定会有周期,但不一定存在最小正周期。 四、学习活动与意义建构 五、重点与难点探究 例1、若钟摆的高度 与时间 之间的函数关系如图所示 (1)求该函数的周期; (2)求 时钟摆的高度。 例2、求下列函数的周期。 (1) (2) 总结:(1)函数 (其中 均为常数,且 的周期T= 。 (2)函数 (其中 均为常数,且 的周期T= 。 例3、求证: 的周期为 。 例4、(1)研究 和 函数的图象,分析其周期性。(2)求证: 的周期为 (其中 均为常数, 且 总结:函数 (其中 均为常数,且 的周期T= 。 例5、(1)求 的周期。 (2)已知 满足 ,求证: 是周期函数 课后思考:能否利用单位圆作函数 的图象。 六、作业: 七、自主体验与运用 1、函数 的周期为 ( ) A、 B、 C、 D、 2、函数 的最小正周期是 ( ) A、 B、 C、 D、 3、函数 的最小正周期是 ( ) A、 B、 C、 D、 4、函数 的周期是 ( ) A、 B、 C、 D、 5、设 是定义域为R,最小正周期为 的函数, 若 ,则 的值等于 ( ) A、1 B、 C、0 D、 6、函数 的最小正周期是 ,则 7、已知函数 的最小正周期不大于2,则正整数 的最小值是 8、求函数 的最小正周期为T,且 ,则正整数 的值是 9、已知函数 是周期为6的奇函数,且 则 10、若函数 ,则 11、用周期的定义分析 的周期。 12、已知函数 ,如果使 的周期在 内,求 正整数 的值 13、一机械振动中,某质子离开平衡位置的位移 与时间 之间的 函数关系如图所示: (1) 求该函数的周期; (2) 求 时,该质点离开平衡位置的位移。 14、已知 是定义在R上的函数,且对任意 有 成立, (1) 证明: 是周期函数; (2) 若 求 的值。高一数学集合教案 篇3
高一数学集合教案 篇4
高一数学集合教案 篇5
高一数学教案 篇6
2020高一数学教案 篇7