首页 > 教学教案 > 教案大全 > 教学设计 > 圆的面积教学设计活动教案【最新4篇】正文

《圆的面积教学设计活动教案【最新4篇】》

时间:

在现实学习生活中,大家一定没少参加主题班会吧?主题班会有利于提高学生的认知能力和自我教育能力,更有利于班级集体的建设。敲定一个主题班会,都需要做哪些准备呢?下面是整理的圆的面积教学设计活动教案【最新4篇】,您的肯定与分享是对小编最大的鼓励。

圆的面积教案 篇1

【教学内容】

《义务教育课程标准实验教科书·数学》六年级上册第69~71例1、例2。

【教学目标】

1.学生通过观察、操作、分析和讨论,推导出圆的面积公式。

2.能够利用公式进行简单的面积计算。

3.渗透转化思想,初步了解极限思想,培养学生的观察能力和动手操作能力。

【教、学具准备】

1.CAI课件;

2.把圆8等分、16等分和32等分的硬纸板若干个;

3.剪刀若干把。

【教学过程】

一、尝试转化,推导公式

1.确定“转化”的策略。

师:同学们,你们想一想,当我们还不会计算平行四边形的面积的时候,是利用什么方法推导出了平行四边形的面积计算公式呢?

预设:

引导学生明确:我们是用“割补法”将平行四边形转化成长方形的方法推导出了平行四边形的面积计算公式。

师:同学们再想想,我们又是怎样推导出三角形的面积计算公式的呢?

师:对了,我们将平行四边形、三角形“转化”成其它图形的方法来推导出它们的面积计算公式。

2.尝试“转化”。

师:那么,怎样才能把圆形转化为我们已学过的其它图形呢?(板书课题:圆的面积)

请大家看屏幕(利用课件演示),老师先给大家一点提示。

圆的面积教案 篇2

教学目的:

1、通过教学使学生建立圆面积的概念,理解圆面积计算公式的推导过程,掌握圆面积的计算公式。

2、能正确地应用圆面积计算公式进行圆面积的计算,并能解答有关圆的实际问题。

教学重点:

理解和掌握圆面积的计算公式的推导过程

教学难点:

圆面积计算公式的推导

教学过程:

一 、创设情境,提出问题

( 课件演示)用一根绳子把羊栓在木桩上,演示羊边吃草边走的情景。(生看完提问题)

生:1羊走一圈有多长?2羊最多能吃到多少草?3羊能吃到草的最大面积是多少?

二、引导探究,构建模型

A:启发猜想

师:羊吃到草的最大面积最大是圆形:

1、这个圆的面积有多大猜猜看;

2、试想圆的面积和哪些条件有关?

3、怎样推导圆的面积公式?(生试说)

B:分组实验,发现模型

学生分小组将平均分成16等分、32等分的圆放在桌上自由拼摆,拼成以前学过的平面图形摆好后想一想:

1、你摆的是什么图形?

2、你摆的图形与圆的面积有什么关系?

3、图形各部分相当于圆的什么?

4、你如何推导出圆的面积?

请小组长汇报拼摆的情况,鼓励学生拼摆成不同的平面图形(师课件展示动画效果)可以拼摆成长方形、梯形、三角形、平行四边形四种情况。

三、 应用知识,拓展思维

1师:要求圆的面积必须知道什么?

2 运用公式计算面积

A完成羊吃草的面积

B完成课后“做一做”

C一个圆的直径是10厘米,它的面积是多少平方厘米?

D找出身边的圆,同桌合作量一量半径,算一算面积(完成实验报告单)

测量物直径(厘米)半径(厘米)面积(平方厘米)

3应用知识解决身边的实际问题(知识应用)

下面是一个体育场的平面图,请你算一算跑道的周长是多少米?长方形体育场的占地面积是多少平方米?学校要请师傅给体育场铺草皮,已知每平方米的草皮是2.4元,学校一共要付多少钱才能完成?

四 归纳总结,完善认知

今天学了什么,这些知识我们是用什么方法学来的,你懂得了什么?

圆的面积教案 篇3

教学目标:

1、通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

2、激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括能力,发展学生的空间观念。

3、渗透转化的数学思想和极限思想。

教学重点:

正确计算圆的面积。

教学难点:

圆面积公式的推导。

教具准备:

多媒体课件二套,圆片。

一。情景导入

1、 师:(出示图)草地上长满了青草,一只羊被栓在草地的木桩上,请问:它能吃光全部青草吗?它最多能吃到哪个范围内的青草?请大家画出这只羊活动范围的示意图,两位同学到黑板上画。(一位画的是周长,另一位画的是面积。)(动画演示)

师:这个范围的大小指圆的周长还是面积?为什么?谁画的正确,(圆的面积)。

(板书:圆的面积)

2、师:什么是圆的面积?先说,再看书,学生读,(教师用课件演示)

师:看到这个课题后,你们会想到什么?这堂课要解决什么问题呀?

生:这堂课我们要学习圆的面积是怎样求出来的。

生:学生圆的面积公式。

师:你们知道圆的面积公式后,你们还想到什么问题?

生:圆的面积公式根据什么推导出来的。

师:对!刚才这几位同学跟老师想的一样。这堂课我们要解决两个问题。

(通过创设情景,激发学生的学习兴趣,形成良好的学习动机。通过学生提出问题,明确学习目标。)

二、动手操作,探索新知

1、 猜测(每项用课件出示)

师:我们先用一个简单办法,猜想一下圆面积的公式。把一个圆4等分,用半径作边长画一个正方形。这个正方形的面积可用r2表示。在这个圆上可以画同样的4个正方形,它们的面积可以用4 r2 表示,你们观察一下这个圆的面积等不等于4 r2 ?

生:不等。

师:为什么?

生:因为,这个圆面积还要加上外面的4小块,才是4 r2 。

师: 这个圆的面积比4 r2 小,我们再在圆内画一个最大的正方形,这个正方形的面积怎么求出来?

生:这个正方形是由四个同样大小的三角形组成,每个面积1/2r2,总面积2r2。

师:圆的面积和正方形比较谁的面积大?

生:圆的面积大

师:可以观察出圆的面积范围在2r2-4r2

(这里让学生了解解决问题时要善于观察、敢于猜想。渗透无限等数学思想,)

2、 回忆旧知,

师:圆能不能直接用面积单位支量呢?为什么?

生: 因为圆是由曲线围成的,用面积单位直接量是有困难的。

师:该怎么办呢?(教室沉默)

师: 请同学们看屏幕,(师播放课件)边看边回忆:以前我们研究过平行四边形、三角形和梯形面积的求法,那时我们是怎样处理的?(用投影机放出几种图形的转化图解,边出示,边讨论)

师:这些图形面积公式的'推导方法对我们研究圆的面积有什么启示呢?

生:我们可以用图形转化的方法,求圆的面积。(把未知的转化为已知的)

师:这个办法很好。那么把圆形转化成什么图形呢?

[评:启发学生运用转化的数学思想解决问题。这种设计既复习了旧知识,又为学生新知识作好铺垫,能够促进学生充分运用迁移规律把新旧知识联系起来组成一个新的知识结构。]

3、动手操作

(1)师:请同学们动手剪拼一下,看到底能拼成什么图形。(学生动手操作。)

师:谁能向大家汇报一下,你把圆拼成了什么图形?(生答:拼成了。请把你拼好的图形放在实物投影上展示给大家看。一个同学用8等份的圆片摆成近似平行四边形,一个用不着16等份的圆片摆成近似长方形)

(2)师::请看大屏幕,16等份的和8等份谁拼成更接近长方形?

生:16等份拼成的图形就会越接近于长方形。如果分的份数越多,每一份就会越细,)

师:对。这就是说,分的份数是无限的。你们可以闭上眼睛想一想,如果分的份数越多,长边就越接近直线,这个图形就越接近于长方形。课件演示

(3)看拼成的长方形与圆有什么联系?你能根据长方形的面积计算公式推导出圆的面积计算公式吗?小组讨论一下。 (教师要求学生观察自己在课桌上拼出的图形,一边讨论,一边逐步写出推导的过程。)

学生汇报讨论结果。生答师继续演示课件。

生答:能,因为拼成的长方形的面积与圆的面积相等,长方形的长相当于圆周长的一半,宽相当于半径。

因为长方形的面积=长宽

所以圆的面积=周长的一半半径

S=r

S=r2

师:结合公式S=r2,说说圆的面积是怎样推导出来的?

(4)师:这个面积公式是不是正确,我们可以通过其它图形来验证一下。有的同学把圆拼成了三角形我们用三角形来验证一下,你能根据三角形计算公式推导圆的面积计算公式吗?(课件演示)

生答:三角形的底相当于圆周长的,高相当于圆半径的4倍。

因为 三角形的面积=底高2

所以 圆的面积=周长的半径的4倍

S=4r2

S=r2

师:我们用三角形也推出了圆的面积公式 S=r2 。同学们还有其它图形来验证吗?

(5)生:我们把圆转化成梯形来验证。(课件演示)

生:梯形的上底与下底的和相当于圆周长的一半,高相当于半径的2倍。

因为梯形的面积=(上底+下底)高2

所以圆的面积=周长的一半半径的2倍

S=2r2

S=r2 用梯形的面积

3、小结:刚才你们把圆转化成为哪些图形,分别推导出圆的面积计算公式?(S=r2)

我们根据拼成的近似平行四边形、长方形、三角形、梯形都推导出了同样的公式:S圆=r2。

唉!我们刚才猜的圆面积是多少?你们真了不起!与r2很接近啊!

圆的面积必需要具备哪些条件?

[评:打破了过去教师演示教具学生看的框框,而是要求每个学生动手操作,并渗透转化、无限等数学思想,让学生自己从尝试中推导圆面积的公式。]

(三)课后巩固

1、 现在你可以求出小羊大约最多能吃到多少面积的青草吗?为什么?请你给它☆☆补个条件。

(照应了开头,又学练习了面积的计算。)

2、 根据下面条件求出圆的面积

r =5分米 d =3米

3同学们怎么计算树的横截面的面积,是不是一定把树木锯断?(同学们讨论答出测出周长后师再出题)树的周长是非曲直18.84平方米,求树的横截面的面积?

(用学到的知识来解决生活中的问题,培养学生的应用能力)

(四)师:这堂课大家学到了什么?有什么收获?

(学生热烈发言,最后教师总结,解答了课一开始提出的两个问题。)

[评:课堂小结时间虽短,但能使学生认识升华一步,同时做到前后呼应,使整堂课结构严谨,层次清楚。这堂课最大的特点,是能充分调动学生的主动性和积极性,学生既学得生动活泼,又能充分发展思维。]

圆的面积教案 篇4

教学目标:

1、知道圆的面积的含义,理解和掌握圆的面积的计算公式,能够正确计算圆的面积。

2、理解圆的面积公式的推导过程,感受转化的数学思想。

3、根据圆的半径、直径或周长来计算圆的面积,解决简单的有关圆的面积计算的实际问题。

教学重难点:

重点:理解和掌握圆面积的计算方法。

难点:圆面积公式的推导。

准备:圆形纸片

一. 创设情境。

S:同学们,请看这里?(展示课件动画)

S:现在小马有一个问题:我的这个活动范围是一个什么形状? X:是圆形。(板书:圆)

S:小马还有一个问题,我的活动范围占地多大?这个多大指的是圆

的什么量呢?

X:是圆的面积。

S:对了,就是圆的面积,我们现在就来一起学习:圆的面积。(板书课题)

二. 探索交流,学习新知。

1、 出示电子课本。

S:请大家请大家翻到课本67页的彩图,有一个问题:这个圆形草坪的占地面积是多少平方米?怎样计算一个圆的面积呢?你认为怎么做,大胆来说一说。

X1:公式。

X2:转化成学过的图形来计算。

S:(好,转化成学过的图形来计算,看来这位同学预习的非常好,一下子就抓住了问题的重点。)要转化成学过的图形,这个方法不错,那咱们来回想一下,咱们以前学过哪些图形的面积?(单击课件)

X:长方形,正方形,三角形,平行四边形,梯形等等。

(单击课件)

S:但是这么多学过的图形,转化成哪一个比较好呢?大家来选一选。 X:长方形,正方形,平行四边形。

S:喔,这三个图形比较简单,所以我们应该尽量转化成简单的图形来做。请大家看黑板上的电子课本(电子课本)

S读:在硬纸上画一个圆。大家附页1中的圆都准备好了

吗?

X:准备好了。

S:请大家举起来展示一下。好的请放下,老师想问大家,通过剪纸拼图,你发现了什么?

X:(学生自由回答)

S:同学们回答的都很好,现在我来演示一下,大家看看还有没有新的发现。

(课件演示)

2、 讲解课件。

4份时S问:这个像是咱们以前学过的图形吗?

X:不像。

S:不像没关系,咱们继续分,再分成8份,这次呢?

X:有点像平行四边形了。

S:继续分。(演示到32份)

S:这下更像一个平行四边形了,但是,这还没完,咱们来回顾一下刚才我们的拼图过程。(单击课件)

S:咱们从圆开始,先是4份,它完全是一个不规则的四不像,再分成8份,还是不像,然后依次16份,32份,还可以继续往下分的份数越来越多。最后,它会无限地接近一个什么形状呢? X:平行四边形。

X:长方形。

S:到底是长方形还是平行四边形。

S:启发:平行四边形和长方形的区别在哪里?平行四边形的这两条边是斜的,而长方形是竖的。大家从这个4份的图开始看可以观察到,这条边的倾斜度越来越小,最后它就会变得无限接近于90度的竖线,而这个图形也会近似的什么图形?

X:长方形。

(板书:长方形)

S:它不是真正的长方形,而是一个无限接近于长方形的近似长方形。 正如课本68页最上面的这句话。

3、 电子课本P68

S:如果分的长方形。同时我们的小精灵又给我们提出了一个问题:拼成的关系?

S:请大家注意看我的课件演示。(讲解)

板书:长方形的面积= 长 *宽 圆的面积=圆周长的一半 * 半径 =C*r 2

=2π

2r*r

=πr*r

2 =πr

2即 S=πr

S:从这条公式我们可以看出,要想求出圆的面积,只要知道什么就可以了?

X:半径。

S:同学真聪明。好的,现在我们已经掌握了圆面积的计算公式了,要不要试一试这条公式好不好用?

S:来看一下咱们这节课刚开始看到的这个圆形花坛,原来它的直径有20m,要想求出它的面积,先要求出什么来?

X:半径。

学生先做题,再用课件演示答案。

三. 拓展练习。

1、 回答(尽量不要动笔)。

2、 计算(78.5 m2)

S= πr2

2 = 3.14×5

= 3.14×5×5

=3.14×25

=78.5 (m2)

四. 回顾总结。

谁愿意和大家分享你的学习成果?(学生自己总结)

老师补充:1.化圆为方。

2、 S= πr2

3、计算圆面积的必要条件是什么(半径)

板书:

1、 化圆为方。