《小学五年级上册数学《用字母表示数》教案【优秀8篇】》
内容导航
《用字母表示数》优秀教学设计 篇1数学《字母表示数》教案 篇2《用字母表示数》优秀教学设计 篇3用字母表示数教案 篇4数学《字母表示数》教案 篇5用字母表示数教案 篇6《用字母表示数》优秀的教学设计 篇7小学五年级上册数学《用字母表示数》教案 篇8《用字母表示数》优秀教学设计 篇1
教学目的:
1.使学生理解用字母表示数量关系的意义能够用字母表示一些常见的数量关系式,并能将各个量的数值代入关系式求值;
2.培养学生抽象思维能力;
3.培养学生养成良好的书写和审题的习惯。
教学重点:
用含有字母的式子表示数量关系。
教学难点:
直接用含有字母的式子表示出数量关系。
教学过程:
一、导入新课:
1、屏幕显示:CCTV,KFC,M,P,你知道这些字母所表示的意思吗?(你喜欢说哪个,就说哪个)
2、提问:除了这些,你还知道哪些表示特定含义的字母?学校有a名教师,b名学生,a、b表示什么?
3、生活中经常用字母来表示特定的含义,这样既方便有简洁,在我们的数学中还经常用字母来表示数,今天这节课我们就一起来研究“用字母表示数”。(板书课题)
二、学习新知:
(一)活动一:数青蛙
1、出示课件“1只青蛙1张嘴,2只青蛙2张嘴,3只青蛙3张嘴,……”(学生读后,发现读不完这首儿歌)
师:为什么不读了?
生:青蛙太多了,数不完。
师:你能用一句话表示这首儿歌吗?
生1:几只青蛙几张嘴,
生2:无数只青蛙无数张嘴
生3:n只青蛙n张嘴。
2、思考n可以表示哪些数。
3、举出一个用字母表示数的例子
N只青蛙N张嘴,2N只眼睛,4N条腿
(二)活动二:猜年龄
1、同学们,你们今年几岁啦?
2、想知道老师的年龄吗?你们先猜猜。
3、我比你们平均年龄大16岁,那我今年多大?你怎么知道的。
4、当你们1岁的时候,老师多大?
当你们2岁的时候,老师多大?
当你们12岁的时候,老师多大?
当你们A岁的时候,老师多大?
板书:
同学的年龄老师的年龄
1+16
2+16
12+16
AA+16
…………
在这,A表示什么?A+20又表示什么?
5、讨论字母A的取值。、
师:
⑴这里的A可以表示任何一个数字吗?表示500行不行?
⑵如果老师的年龄用A表示,同学的年龄怎么表示?
6、用A表示你们每个人的年龄,老师比你们每个人都大16岁,那你能不能利用上A,表示出你爸爸的年龄,你妈妈的年龄呢?
7、出示图片:分别用字母表示淘气和妈妈的年龄()
8、观察两个算式,什么变了,什么没有变。
教师小结:看来这字母表示数真好,一举两得。使问题即简单又明确。
(三)活动三:字母表示数乘法写法
1、出示三根小棒拼成的三角形,问:拼成一个三角形要几根小棒,2个呢,3个呢……
2、引出用3×a来表示
3、规范写法,可以写作3a或3a
(四)探究用字母表示有关图形的计算公式及运算定律
归纳公式:既然用字母表示数有这么多的好处,那我们就将以前学过的有关图形的计算公式、运算律用字母表示来表示。(图形中用“a表示边长(或长),b表示宽,c表示周长,s表示面积。”)
正方形周长:C=4a
长方形周长:C=a+b
正方形面积:S=a×a
长方形面积:S=a×b
加法交换律:a+b=b+a
加法结合律:a+b+c=(a+b)+c=a+(b+c)
乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c),
乘法分配律:a+b)xc=axc+bxc
三、巩固新知,智力闯关
(一)我当小法官
1、每千克苹果a元,梨的售价是苹果的4倍,梨是a4元。()
2、笑笑有10元钱,买笔用去b元,还剩下10-b元。()
3、摆1个三角形需要3根小棒,摆X个三角形需要3+X根小棒。()
4、一只鸵鸟的奔跑速度是70千米/时,t时奔跑70t千米。()
(二)我会填
1、1只手有5个手指,2只手有10个手指,N只手有()个手指。
2、小刚每天看课外书15页,a天看了()页。
3、四一班有女生n人,男生比女生少m人,男生有()人。
4、每千克苹果a元,每千克梨b元,买3千克苹果比2千克梨贵()元。
数学《字母表示数》教案 篇2
教学内容:
用字母表示数和简易方程
教学目的:
1.使学生加深理解用字母表示数的意义和作用,会用字母表示数和常见的数量关系。会根据字母所取的值,求含有字母的式子的值。
2.使学生加深理解方程的意义,会解简易方程。
教学过程:
一、用字母表示数
1.复习用字母表示数。
教师:我们知道,用字母表示数可以简明地表达数量关系、运算定律和计算公式.为研究和解决问题带来很多方便;我们通过下面的例子。边回忆、边总结以前学过的内容和方法
教师:大家先想一想.在一个含有字母的式子里.数字与字母、字母与字母相乘,应该怎样写?例如,a乘以4.5可以怎样写? s乘以h可以怎样写?(a乘以4.5可以写成a4.5或a4。5或4.5a。不可以写成a4.5。s乘以h可以写成S.H或SH)
教师指出:除了不能写成a4.5以外。其他都是对的:
例l用示单价.a麦示数量.c表示总价.写出下面的数量关系式。
(1)已知单价和数量.求总价的公式;
(2)已知总价和数量,求单价的公式:
(3)已知总价和单价。求数量的公式:
(4)如果每文圆珠笔的价钱是3,75,要计算买8支圆珠笔要用多少钱,应该用上面的哪个公式?
教师让学生独立解答。巡视时,注意观察学生用的字母和公式的写法是否正确、发现遗忘的要及时辅导,并纠正错误。完后,集体订正。
教师让学生用字母写出加法和乘法的运算定律,平行四边形和梯形的面积计算公式,长方体、圆柱和圆锥的体积计算公式。学生写完后指名回答。
教师:用a、b,c、表示三个自然数,那么同分母相加的计算法则应该怎样写?( + = 。)
例2一个商店原有80千克桔子,又运来了12筐桔子。每筐重a千克。
(1)用式子表示出这个商店里桔子重量的总数。
(2)根据这个式子,求a=15,商店一共有多少千克桔子。
教师指名回答。
(1)80十12a
(2)a=15时,80十12a=80十1215=260
答:商店共有260千克桔子。
2.做教科书第98页做一做的题目。
第l题.教师让学生自己做。巡视时,注意观察学生对a的3倍与a的3倍 的结果是怎样选择的,做完后集体订正。
第2题,让学生独立完成。做完后集体订正:
二、简易方程
l,复习方程的概念。
教师出示复习题:
下列等式,哪些是方程,哪些不是方程?并说明理由:
18十25 = 43 5x+4x+8 = 35
43183 = 6 3x十5=7 a十4
学生指出:3x十5=7。 5x十4x+8=35 x-2=8是方程。它们是含有未知数的等式;其他的不是方程。
教师:我们知道含有未知数的等式叫做方程。方程的特征是:它含有未知数。同时又是个等式。
教师:大家会不会解方程?起解答方程x一2=8。学生解答后,指名回答方程的解(x=10)。
教师:x=10是方程x一2=8的解:使方程左右两边相等的未知数的值叫做方程的解。求方程的解的过程叫做解方程。我们要把方程的解和解方程这两个概念要分辨清楚。
2.复习解简易方程。
例;解下列方程,并写出检验过程。
3X十5=7 5X十4X十8=35
学生做题时.教师巡视。注意帮助有困难的学生和及时纠正错误。集体订正时。让学生将5X十4X十8=35的解答过程写在黑板(或投影片)上,说明解答过程中运用
到什么运算定律和运算关系。
教师:在解方程的过程中。我们主要是应用了加、减、乘、除法中各部分间的关系和一些运算定律。
3,做教科书第99页上面的做一做的题目。
第1题,让学生独立完成。集体订正时,指名回答并说明理由。
第2题.让学生独立完成。集体订正时着重说明有3道小题,在解答中出现3x=150,方程的解都是X=50
例4一个数的 比这个数的25%多10,这个数是多少?
让学生独立解答:订正时,指名用口算检验。
4.做教科书第99页下面的做一做的题目。
让学生独立完成。集体订正时.让学生说明哪一题列方程解比较容易。哪一题列算式比较容易。
三、小结
教师引导学生分别按照复习的过程叙述和小结复习的内容。
四、作业
练习二十一的第14题。
《用字母表示数》优秀教学设计 篇3
一、教学目标
(一)知识与技能
在现实情境中理解含有字母的式子所表示的意义,会用含有字母的式子表示数量和简单的数量关系,初步了解含有字母的式子中省略乘号的书写方法;能正确地根据字母的取值求含有字母式子的值。
(二)过程与方法
在经历把实际问题用含有字母的式子进行表达的抽象过程中,感受用字母表示数的优越性,发展符号感,同时渗透不完全归纳思想,提高抽象概括能力。
(三)情感态度和价值观
渗透函数思想,感受变量间的对应关系和相互依存关系,能根据实际情况确定字母的取值范围。
二、教学重难点
教学重点:用含有字母的式子表示数量和数量关系,能正确地求含有字母式子的值。
教学难点:理解含有字母式子的双重含义、感受用字母表示数的优越性。
三、教学准备
PPT课件等。
四、教学过程
(一)古诗激趣,导入新课
1.古诗激趣。
(1)古诗引入:我国的古诗具有简洁美,高度概括,寥寥数语却涵盖万千的妙用。我国宋代诗人王安石的《梅花》学过吗?
(2)初步感知:墙角有“数”枝梅花,到底有几枝梅花呢?你能从数学的角度想个办法,精炼地表示出梅花的枝数吗?
预设:会有学生用字母表示梅花的枝数。
2.导入新课。
(1)教师谈话:有的同学想到用字母来表示梅花的枝数,真好!这节课,我们就来研究“用字母表示数”,一起来感受它那神奇的魅力!
(2)板书课题:用字母表示数。
【设计意图】诗与用字母表示数有许多相通之处,它们都是高度概括的,具有简洁美。以古诗导入,既弘扬了民族文化,又能从中发现数学问题,有效地奏响探索知识的序曲。
(二)情境感悟,探究新知
1.教学例1,引导探究。
(1)出示情境。
(2)引导感受。
①从图中你知道了什么?(爸爸比小红大30岁)
②当小红1岁时,爸爸多少岁?你能用一个式子表示吗?
③当小红2岁时呢?3岁时呢?(随着学生回答,教师PPT课件演示或板书)
④你还能接着这样用式子表示下去吗?请在草稿本上写一写。
⑤你在写这么多式子时,有什么感受呢?这样的式子能写完吗?
(3)观察思考。
①仔细观察这些式子,你有什么发现?什么变了?什么不变?为什么不变? ②上面这些式子每个只能表示某一年爸爸的年龄,那我们能不能想个好办法,只用一个式子就简明地表示出任何一年爸爸的年龄呢?
(4)自主尝试。
预设一:用文字表示,如:小红的年龄+30岁=爸爸的年龄;
预设二:用图形表示,如:用o表示小红的年龄,o+30表示爸爸的年龄; 预设三:用符号表示,如:用?表示小红的年龄,?+30表示爸爸的年龄; 预设四:用字母表示,如:用a表示小红的年龄,a+30表示爸爸的年龄。
(5)交流优化。
①你喜欢哪种表示方法?为什么?
②小结:在数学中,我们经常用字母表示数。用字母表示数,既简洁,又具有概括性和普遍性。
用字母表示数教案 篇4
教案背景
面向学生:□小学2,学科:数学(青岛版四年级下册)
课时:1
学生课前准备:
预习教材第2~3页,了解“用字母表示数”的初步意义。
小组合作,完成教材第4~5页自主练习题。
教学课题
通过学习使学生了解“用字母表示数”是代数的基础知识,为以后学习方程打好坚实的基础。
1、结合“黄河掠影”图片说明,培养学生据图获取简单知识的能力。
3、会用含有字母的式子表示数量关系,学会含有字母的乘法算式的简写。
4.在探索用字母表示数的过程中,建立字母式子的模型,充分体会用字母表示数的方法,作用和优越性。
5、在教学中培养学生的爱国情感。
教材分析
本节教材信息窗呈现的是黄河三角洲的美丽画面和文字说明。主要呈现的信息是黄河三角洲面积和平均每年新增陆地面积。拟引导学生通过研究黄河三角洲逐年造地面积的变化情况,引入“用字母表示数”和“求含有字母式子的值”的学习。
教学重点:
在具体的情境中理解用字母表示数的意义,初步掌握用字母表示数的方法。
教学难点:
学会用含有字母的式子表示数量。
教学之前用百度在网上搜索《黄河三角洲》的相关图片材料作参考。通过研究教材了解到教学的重点和难点,确定课堂教学形式和方法。然后根据课堂教学需要,利用相关的。图片资料,课堂放给学生观看,加深印象。、2、在具体的情境中理解用字母表示数的含义,初步掌握用字母表示数的方法。、
讲授法、自学观察法、分组讨论法
教学时,可以让学生课前先搜集一些有关黄河三角洲的资料或图片,在课堂上上交流,。然后通过课件,资料或图片介绍黄河三角洲的形成原因。再让学生观察教材中的情境图,引导学生读懂图中提供的数学信息,提出有价值的数学问题,学习新知识。
教学过程
【新课导入】
1、师:哪位同学能说说我们的生活中哪些地方用到字母?(指名回答)
生1:英语课本,学校名字的下面有英文字母。
生2:我家的车牌号里有字母。
生3:电脑键盘上。
2、师:是的,字母在我们的生活中应用很广泛,同样,数学中也经常用到用字母来表示数量
关系,这节课我们就来研究怎样用字母表示数。(板书课题《用字母表示数》)
3、同学们去过黄河三角洲吗?现在老师就带你们去领略一下那里的迤逦风光。
【展开新课】
【百度百科】
(一)通过观察,你看到了什么?从图上你了解到了哪些信息?
生1:我知道了黄河三角洲目前的面积已达5450平方千米。
生2:我知道了黄河三角洲的成因。
生3:我知道了黄河三角洲每年新增陆地面积25平方千米。
生4:我看到了一望无际的黄河三角洲。
(二)根据上面的信息,你能提出什么数学问题?
生1:两年造地约多少平方千米?
生2:三年造地多少平方千米?四年呢?五年呢?
生3:多少年,黄河三角洲的面积达到了5450平方千米?
(三)怎样解决两年造地多少平方千米?
根据学生回答,板书
造地时间(年)造地面积(平方千米)
22×25=50
33×25=75
44×25=100
(四)观察上面的算式,你有什么发现吗?
生1:造地面积和造地时间有关系。
生2:我发现求几年的造地面积,就用25乘几。
生3:我发现在求造地面积时,只有一个因数在变化,那就是造地时间。
(五)小组讨论:能否用一个简明的算式来表示造地面积和造地时间的关系?
(小组内选代表发表本组的想法)
组1:用25乘年数,也就是25×年数
组2:用△表示年数,造地面积就是:25×△
组3:用□表示年数,造地面积就是:25×□
组4:因为“t”表示时间,造地面积就是:25×t
师:同学们的想法很好,发言很精彩,说明同学们都在认真讨论了。但是有个事需要说明一下:在含有字母的乘法算式中,“×”可以用“·”来代替,如“25×t”可以写成:
“25·t”,或直接写成“25t”、
(六)灵活运用,拓展延伸
1、省略乘号,写出各式。
①α×χ②χ×χ③5×α④χ×3
⑤α×b⑥α×8⑦b×b⑧α×1
2、课本第4页第2,3,4题。
先让学生独立完成,然后组内交流填
3、书第5页第5题。
这是结合实物图巩固用字母表示数的练习。第二组题关系比较复杂,练习时,要引导学生说清图中的意思,再用含有字母的式子表示出红绳的长度。
4、书第5页第6题。
这是一道联系实际巩固用字母表示数的练习。练习时,要让学生明白,大坝的高度包括两部分,一部分是水面到坝顶的高度,另一部分是水面以下大坝的高度。
(七)课堂小结,自我评价
小结:这节课我们学习了用字母表示数。如果让你为自己今天在课堂上的表现打分,你想给自己打多少分?
(八)创意作业
你能用你的岁数表示出家庭里每一位成员现在的岁数吗?如果爸爸是a岁,你还能表示出家庭中其他成员的岁数吗?你还能提出什么问题?
这节课让学生初步体会到数字可以用字母来代替,学会了写一些用字母替代数的式子,通过设疑出示图片,出示问题,小组合作探究等方法,来完成本节课的教学任务,基本达成了教学目标,教育教学效果良好。
存在的问题:
1、有的学生对“把乘号省略和简化”还不太适应。
2、有的学生还习惯把字母写在数字前面。
补救方略:有些知识还需要继续加以强调;对出现问题的同学还需要个别辅导,加强练习。
数学《字母表示数》教案 篇5
一、教学目标:
1、使学生在现实情境中理解并学会用字母表示数,会用含有字母的式子表示数量、数量关系和计算公式,学会含有字母的乘法算式的简便写法。
2、使学生经历把实际问题用含有字母的式子进行表达的抽象过程,体会用字母表示数的概括与简洁,发展符号感。同时,增强对数学的好奇心和求知欲。
二、教学重点难点
1、教学重点:理解用字母表示数的意义,会用含有字母的式子表示数量。
2、教学难点:能用含有字母的式子表示数量,体会字母表示数的优越性。
三、教学过程
(一)新课导入,揭示课题
1、用生活
中熟悉的标志引出“字母”
师:同学们,我们生活中到处可以看点各种各样形形色色漂亮的标志,那么,你认识这个标志吗?
(1)、出示中央电视台台标
师:你知道这是什么标志吗?指名回答。
(2)、出示肯德基标志
师:那么,这个是什么标志呢?一起回答。
师:刚才的两个标志都是用什么表示的呢?(板书:字母)
生活中用字母来表示一些事物是不是很简洁呀、很能概括一些东西的呀,你再能举一些例子么?指名回答。
2、用字母表示数特定的数
(1)、出示纸牌图
师:大家的知识面真广,那么字母除了这些事物标志之外,还能在那些地方用到呢?我们一起来看一下。(出示纸牌)
师:大家玩过算24点吗?你能快速算一算吗?
师:大家算的很好很快。可是,在算24点的时候没有1呀?(A表示1)
(2)、出示连续的偶数
师:我们继续来看(出示一组连续的偶数),这是一组连续的偶数,这里面的m又表示什么呢?一起说吧。
师:像刚才纸牌中的A以及连续偶数中的m都是用来表示什么的呢?(板书:数)
师:这就是我们这节课要来研究的:用字母表示数(完成板书)。这里A表示1、m表示8(板书:A=1,m=8),我们就说A和m这两个说表示的特定的数。(板书:特定的数)那么字母除了表示一个特定的数之外它还能表示什么呢?我们一起来看。
(二)互动探索,教学新课
1、探索用字母表示数(出示一个三角形)
师:老师给大家带来了一个摆好的三角形(出示1个三角形),如果要摆这样的1个三角形要用几根小棒呢?你能用式子怎么表示吗?(板书:1×3)在这个式子里1表示什么?(三角形的个数)3表示什么呢?(每个三角形需要小棒的根数)
师:如果摆2个这样的三角形需要几根这样的小棒呢?(出示2个三角形)你能用算式表示吗?(板书:2×3)
师:如果摆3个这样的三角形需要几根这样的小棒呢?(出示3个三角形)你能用算式表示吗?(板书:3×3)
师:如果摆4个这样的三角形需要几根这样的小棒呢?(课件出示)你能用算式表示吗?(板书:4×3)
师:像这样的三角形我们还可以继续摆下去,可以摆5个、摆6个等等。你能用不同的式子表示出摆不同个三角形时所用的小棒的根数吗?(在自备本上写下去)
提问:谁能告诉老师你有什么发现?(一个不变的数3,一个变化的数)那么,像这样的式子我们永远都写不完,你能想一个办法用一个式子来概括我们所要写的所有式子吗?(板书学生写的式子,比如a×3)说说你的想法?(引导学生说出a表示许多变化的数)你和这位同学一样吗?请你再来说说。
师:很好,这里字母a表示的是许多变化的数(板书:变化的数)
说明字母不仅可以表示一个特定的数还可以表示许多变化的数。同时可以用不同的字母来表示变化的数。
提问:在这里a能表示哪些数呢?(自然数)想想这里面的a能不能表示小数呢?指名回答为什么?那能不能表示分数呢?看来字母表示的数是有一定的范围的。
2、探索用字母表示数量关系
师:同学们请看大屏幕,学校参加兴趣小组,有美术组24人,现在已知了书法组比美术组多6人,你能提出什么问题?(生:书法组又多少人)书法组哟多少人呢?怎么列式?(生:24+6 =30人)24+6表示什么呢?(生:书法组又多少人?)
师:已知了舞蹈组比美术组多9人,你又能提出什么问题呢?(生:舞蹈组又多少人)舞蹈组又多少人呢?怎么列式?(生:33人 24+9)24+9表示什么呢?(生:舞蹈组有多少人?)
师:看这个你会吗?已知了合唱组比美术组多x人,你能提出什么问题呢?(生:合唱组有多少人?)有多少人?怎么列式?(生:有24+x人 24+x)24+x表是什么呢?(生:合唱组有多少人?)
师:当我们知道“x”表示的是多少时,我们就能确定“24+x”表示的是多少人,那么现在已知了x=10,可以求出24+x的值,学生举手回答(生:---)
师小结:听听,这位同学说的多清晰呀。通过刚才的学习,老师发现我们班有一群善于思考的同学。从刚才的研究中我们知道了含有字母的式子可以表示数也可以表示数量间的关系。有时人们喜欢用某个固定的字母来表示一个量。(出示正方形)
3、探索用字母表示数量关系时的简便写法
(1)、指名读题。
师:大家来复习一下,正方形的周长怎么求?(正方形周长=边长×4)面积计算公式呢?(正方形面积=边长×边长)那么该怎样用字母来表示这两个公式呢?指名回答(板书在下面:a×4 a×a)
提问:周长会用字母表示吗?(固定用大写的C)
师:面积的计算公式用字母怎么表示呢?
(2)、简便写法
大家有没有感觉,用字母来表示比原来(简单了)。如果这里的a×4和a×a有更加简明的写法,想知道吗?请大家自学书106页下面的内容,找出其中的规则,并且将方框中的内容补充完整。
汇报交流:①、a×4或4×a中间的乘号可以改成小圆点,读作a乘4。乘也可以省略不写,不管a×4或4×a都必须数字再前,字母再后。
②、a与1相乘得1a,就是a。
③、a×a可以怎样写?怎样读?表示什么?
指名说说,完成板书,然后观看一段视频。
师:有趣吗?这些规则呀还真不容易记,同学们看着黑板来想想规则中哪些地方要特别注意。请同学们结合这两个公式在小组里说一说。
师:现在我们就用这些规则来试一试,好不好?
(三)巩固练习,深化知识
1、出示想想做做第1题
(1)、指名读题,并告诉老师省略乘号是什么意思?(乘号不写了)
(2)、先让学生填表,追问“4a”表示几本笔记本的价钱?他们都表示了什么数量关系?问:“a”表示什么数?
2、出示判断题、接用手式来判断。
师:2a等于a×2它表示2个a相加。两者表示的意义不一样。
师:这节课同学们学的很好,我们到快乐广场去轻松一下。
3、出示快乐广场。
师:能看懂图中的a、b、c表示什么?同学来说一说。
为什么用不同的字母来表示呀?(在同一题中一般用不同的字母表示不同的数)说说你想去哪?(出示问题)指名回答。
师:好的,咱们就到生活馆去瞧一瞧。
4、(课件演示)
师:现在老师和同学们一起做个小游戏,数青蛙的眼睛,嘴和腿。
师:一只青蛙一张嘴,两只眼睛,四条腿,那么两只青蛙呢?(生:两只青蛙两张嘴,四只眼睛八条腿)嘴怎么算的?眼睛怎么算的?腿怎么算的?(生:两只青蛙的眼睛就是2×2,腿是4×2)那么3只青蛙呢?怎么算青蛙的嘴、眼睛、腿?(生:三只青蛙三张嘴,六只眼睛十八条腿,眼睛3×2腿4×3)听游戏规则,老师说青蛙的只数,你来说青蛙的嘴、眼睛、腿,会说的直接站起来说,看谁的反映最快,5只青蛙(生:---)10只青蛙(生:---)100只青蛙(生:---)那么n只青蛙呢?(生:---)n在这里表示什么呢?(生:青蛙的只数)
(四)课堂小结
同学们,今天我们学习了用字母表示数,这些在我们今天看来再寻常不过的例子在它的诞生之初却是一个伟大的创造。课件出示书上你知道吗的数学史方面的相关内容。
(五)布置作业
102页习题5.1 1.2.3题
用字母表示数教案 篇6
教学目标:
1、让学生理解和掌握用字母表示数的方法,知道含有字母的式子既可以表示数、数量,也可以表示数量关系。
2、会用字母表示数量关系,能求含有字母的式子的值。
3、让学生初步感受用字母表示数的作用和优点,渗透符号化思想。
教学重点:会用字母表示数量关系
教学难点:理解含有字母的式子的意义
教学过程:
一、创设情境,激发探究欲望:
1、儿歌引入:
学生初步体会字母具有的概括性。
同学们都熟悉这样一首儿歌吧:
1只青蛙1张嘴,
2只青蛙2张嘴,
3只青蛙3张嘴,
…
和同学们交流一下。你能用一句话表示这首儿歌吗?
学生汇报:
二、联系生活实际,体会字母表示数的必要性和意义:
1、妈妈和淘气比年龄:
学生初步体会妈妈年龄和淘气年龄的关系:
淘气1岁,妈妈比你大26岁,妈妈的年龄怎么表示:
淘气2岁,妈妈比你大26岁,妈妈的年龄怎么表示:
…
如果淘气的年龄为a岁,那么妈妈的年龄是多少岁呢?怎么表示:
2、摆图形:
学生体会字母表示数的必要性和意义:
出示图形:摆一个三角形需要3根小棒,摆2个这样的三角形需要多少根小棒?摆10个呢?摆a个呢?
生发现寻找规律能帮助我们更快地解决问题,从而产生寻求规律的必要性。为了简洁、清晰地表示规律,需要引入字母,用a代表摆任意的三角形。
生列式:师强调a×3的写法。
三、巩固练习,强化新知:
1、练习:试一试:
第一题:回到刚开始的儿歌,老师再添两句。
你能用一句话说一说这首儿歌吗?为什么?
第二题:哈雷彗星这道题是难点,学生容易错,让学生说出为什么。
用字母既可以表示数、又可以表示两个数的关系,还可以表示什么?(计算公式)你能举例说明吗?
练习第三题:
还可以表示什么?(运算定律)你能举例说明吗?
练习第四题:
四、总结:揭示课题,用字母表示数有什么好处吗?联系生活实际说一说在什么地方用到用字母表示数。
《用字母表示数》优秀的教学设计 篇7
教学内容:
教科书第47~48页,练习十第4~8题。
教学目标:
1、在理解数量关系的基础上,会用含有字母的式子表示数量。
2、在理解含有字母式子的具体意义的基础上,会根据字母的取值,求含有字母式子的值。
3、培养学生的抽象思维能力、归纳概括能力。
教学重点:
用一个含有字母的式子表示数量。
教学难点:
理解用含有字母的式子表示的数量的意义,体会用含有字母的式子表示数量的简洁性。
教学过程:
一、导入新课
师:请看一看,你们的数学课本是多少钱?如果要买一本数学课本和《十分钟掌控课堂》一共要多少钱?
学生列式:5.78+12.50=
如果不知道《十分钟掌控课堂》的价钱,怎么办?能否用一个字母表示?
现在谁能说出一本数学书和《十分钟掌控课堂》一共要多少钱?
再请学生回答:5.78+x表示的是什么?
师:这个含有字母的式子也能表示数量,今天我们就来探讨这个问题。
板书课题:用含有字母的式子表示数量。
二、教学新课
1.学习例4第(1)题。
师:如果我告诉你们,我比XX大20岁,请算一算,XX同学在1岁、2岁、3岁……到现在11岁时,老师各是多少岁。随着学生回答,教师板书如下:
X的。年龄(岁)老师的年龄(岁)
11+20=21
22+20=22
请一名学生在黑板上接着写下去,其他学生在草稿本上写。
学生在写的过程中感到厌烦。
师:求老师岁数的问题提完了吗?(没有)为什么?
学生会说因为XX在不断地长大,XX的岁数每增加一岁,老师的岁数也增加一岁。
师:正因为我们的问题还没提完,所以还应该在这些算式后面打上省略号。
师:虽然XX和老师的岁数都在变化,但是什么没有变?(老师比XX大20岁)
师:我们已经学习了用字母表示数,能不能用一个简明的式子表示老师的岁数呢?
如果字母a表示XX的岁数,那么老师的岁数就是a+20(用其他字母表示也可以)。
在XX和老师的岁数下面接着板书:a与a+20。
师:从a+20这个式子里,你们知道些什么信息?
学生同桌议论或小组讨论,然后交流汇报:
a+20既表明了老师的岁数,又表明了“老师比XX大20岁”这个数量关系,所以,我们只要知道XX的岁数a,就能用这个数量关系算出老师的岁数。(注意:知道老师的岁数也能用这个数量关系算出XX的岁数。)
师:对,只要知道了XX任意一个岁数,就可以求出老师的岁数,我们可以试一试。如果XX7岁入学,老师几岁?
学生回答,教师板书:当a=7时,a+20=7+20=27(岁)
师:当XX19岁考入大学,老师几岁?
学生回答,教师板书:当a=19时,a+20=19+20=39(岁)
师:请同学们思考:如果用字母b表示老师的岁数,那么XX岁数怎么表示呢?
2.教学例4第(2)题。
“嫦娥二号”于2010年10月1日18时59分57秒在西昌卫星发射中心发射升空,并获得了圆满成功。这说明了什么?
出示:在月球上,人能举起物体的质量是地面上的6倍。
读题,引导学生按下面的过程自己推算,并填写下表。
师:这里的x表示什么?你是怎样理解6x的?
师:那么课本插图中的小朋友在月球上能举起的质量是多少?
学生计算后交流,教师板书:6x=6×15=90(kg)
师:如果用字母m表示在月球上能举起的质量,那地球上举起的质量怎么表示?
让学生看课本第47~48页,再想一想第(1)题、第(2)题中的字母分别可以表示哪些数?
师:但是要注意的是人的寿命是有限的,能举起的质量也是有限的,因此a、x表示的数也是有限的。
3.应用所学知识解决实际问题。
师:成年男子与女子的标准体重通常可以用下面的式子表示,身高用厘米数,体重用千克数。出示:
成年男子的标准体重=身高-105
成年女子的标准体重=身高-110
用含有字母的式子表示成年男子或成年女子的标准体重。
教师告诉学生自己的身高,让学生选择一个式子,算出教师的标准体重,再告诉学生教师的实际体重,与计算结果比较,评价教师的实际体重是否符合标准。(教师提示:与标准体重相差2千克之内都属于正常范围)
师:从这几个问题可以看出,用字母表示一些不确定的数量,可以很方便地帮助我们根据实际情况解决问题。
三、巩固练习
1.练习十第4题。(填写在课本上,独立完成后集体核对)
2、练习十第5题。(先独立思考,再填写在课本上,教师巡视指导有困难的学生,完成后交流)
3、练习十第8题。先同桌互相说出三小题中字母或式子所表示的含义,再全班交流。
4、机动练习:练习册32页第八、第十题。
四、课堂小结
五、作业:根据身高计算出爸爸妈妈的标准体重,然后和实际体重比较,然后对爸爸妈妈提些建议!
小学五年级上册数学《用字母表示数》教案 篇8
本单元是在学生掌握了四则计算的意义、常见数量关系、运算律、周长与面积计算等知识的基础上安排的。通过字母表示数,更能概括地理解、表达和应用这些知识,并为以后教学有关方程的知识作必要的准备。
学生初学用字母表示数,会因不习惯而感到困难。因此,教材特别注意从最简单的开始,循序渐进、逐步递进。全单元的教材分三段安排。
第106~107页教学用字母表示一步计算的(只含一个运算符号)数量关系;含有字母的乘法式子的书写规则。
第108~109页教学用字母表示两步计算的(含两个运算符号)数量关系;已知字母的值求式子的值。
第110~112页教学用字母表示两积和(或两积差),并且有相同因数氖抗叵怠?/span>
编写的一篇“你知道吗”介绍著名数学家韦达。一道思考题在较复杂的问题里用字母表示数。
1 让学生自己写出含有字母的式子。
本单元教学用字母表示数,所有含有字母的式子都让学生自己写出来。有些例题为学生写式子留出了空位,有些例题的式子在学生交流的情境中出现。可以说,没有一个含有字母的式子是教材告诉学生的。怎样才能使学生写出含有字母的式子呢?教材采取了两个策略。
(1) 直观形象地显示数量关系。全单元有三道例题以摆小棒围图形为素材,不但能激发兴趣,而且能让学生在活动中体会数学内容,理解数量关系。第106页的第一道例题,摆1个三角形用3根小棒,继续摆,学生明白了摆几个三角形就要几个3根小棒。第108页的第一道例题,先用3根小棒围出一个三角形,添2根小棒就增加了一个相邻的三角形,再添2根小棒又增加了一个相邻的三角形,于是学生明白,增加几个三角形需要添几个2根小棒。第110页的例题,摆1个三角形和1个正方形分别用3根和4根小棒,多次照这样摆,学生就知道摆几个三角形和几个正方形需要几个3根加几个4根小棒,也就是几个7根小棒。这些活动,为学生写出含有字母的式子创造了条件。
(2) 从列出的算式类推。有些例题先列出一些算式,接着再写含有字母的式子就容易了。第106页的第一道例题,先写摆2个、3个、4个三角形要用小棒的根数是2×3、3×3、4×3,学生很容易类推出摆a个三角形要用小棒的根数是a×3。像这样的还有第106页的第二道例题、第108页的第一道例题。让学生经历自己写出含有字母式子的过程起三个作用: 一是调动学习的积极性和主动性;二是在写式子的时候自觉感受其含义;三是初步体会用字母表示数是解决问题的需要,也是解决问题的方式。
2 让学生体会用字母表示数的好处。
(1) 体会用字母能代表一大批具体的数,含有字母的式子能概括地表示数量关系。第106页的第一道例题在写出式子a×3以后,提示学生想一想这里的a可以表示哪些数。学生最先想到的是如果继续摆三角形,a可以表示5、6、7……接着又会想到a也可以表示已经摆过的1、2、3、4,于是得到a可以表示1、2、3、4……无数多个自然数。尽管在其他的例题里教材没有这样的问题,教学中仍然要提出来让学生想一想、说一说。多次进行这样的从部分到全体的联想,学生就能体会到字母表示数具有概括性的特征。
(2) 体会用字母可以表示一个具体的数,这时含有字母的式子就有一个确定的值。第106页的第二道例题写出表示合唱队人数的式子24+x,并知道这里的x也可以表示许多个数之后,让学生计算当x=10和x=14时合唱队的人数。学生又经历了从概括到具体的认识过程,体会到含有字母的式子当字母有确定的值时,式子的值也确定了。第108页例题示范了把x=250代入式子1100-3x求值的方法,再次让学生体会字母的值影响式子的值。
(3) 体会用字母表示公式便于表达、易于记忆。本单元三次教学字母公式,包括正方形的周长公式和面积公式,长方形的周长公式,路程公式等。以长方形的周长公式为例,学生都会先想长方形周长的计算方法是长加宽的和乘2,并以此写出c=(a+b)×2。在这一过程中,体会字母公式比文字表达简便。在写出字母公式s=vt以后,学生乐意用这个公式代替“路程等于速度乘时间”,这正是体会了字母公式方便后的自觉选择。
3 让学生初步掌握用字母表示数的书写规定。
字母与数相乘、字母与字母相乘的时候,有一些书写上的规定应该遵守,主要有三条: 第一,数与字母相乘时的乘号还可以写成小圆点,通常都省去不写,但数必须写在字母的前面。如a×4通常写成4a。第二,字母与字母之间的乘号,也可以写成小圆点,通常也省去不写。如y通常写成xy。第三,两个相同的字母相乘,可以写成平方的形式。如a×a可以写成a2。在教学时要注意三点: 一是结合实例把这些规定对学生讲清楚并作出示范,只要求学生遵守,不要求他们记忆、背诵;二是初学时学生或是由于不习惯而出现错误,或是出于好奇故意把乘号写成小圆点,要耐心指导,帮助他们纠正;三是适当组织类似2a与a2的对比,防止混淆。