首页 > 教学教案 > 小学教案 > 五年级教案 > 五年级下册数学教案(精选4篇)正文

《五年级下册数学教案(精选4篇)》

时间:

作为一名人民教师,有必要进行细致的教案准备工作,编写教案助于积累教学经验,不断提高教学质量。怎样写教案才更能起到其作用呢?下面是整理的五年级下册数学教案(精选4篇),希望大家可以喜欢并分享出去。

五年级下册数学教案 篇1

教学内容:人教版小学五年级数学质数和合数

教学目标:

1、理解质数和合数的概念,并能判断一个数是质数还是合数,,会把自然数按因数的个数进行分类。

2、培养学生细心观察全面概括。准确判断。自主探索、独立思考、合作交流的能力。

教学重点:能准确判断一个数是质数还是合数。

教学难点:找出100以内的质数。

教学过程:

一、复习导入(加深前面知识的理解,为新知作铺垫)

下面各数谁是谁的因数,谁是谁的倍数,谁是偶数,谁是奇数。

3和15 4和24 49和7 91和13

指名回答。

二、小组合作学习质数和合数的的概念。

全班分两组探讨并写出1~20各数的因数。

1、观察各数因数的个数的特点。

2、板前填写师出示的表格。

只有一个因数

只有1和它本身两个因数

除了1和它本身还有别的因数

3、师概括:只有1和它本身两个因数,这样的的数叫做质数。除了1和它本身还有别的因数,这们的数叫做合数。(板书:质数和合数)

4、举例。

你能举一些质数的例子吗?

你能举一些合数的例子吗?

练习:最小的质数是谁?最小的合数是谁?质数有多少个因数?合数至少有多少个因数?

5、探究“1”是质数还是合数。

刚才我们说了还有一类就是只有一个因数的。想一想:只有一个因数的数除了1还有其它的数吗?(没有了,)1是质数吗?为什么?是合数吗?为什么?(不是,因为它既不符合质数的特点,也不符合合数的特点。)

引导学生明确:1既不是质数也不是合数。

练习:自然数中除了质数就是合数吗?

三、给自然数分类。

1、想一想

师:按照是不是2的倍数把自然数分为奇数和偶数。按照因数个数的多少,把非零自然数分为哪几类?

生:质数,合数,1。

2、说一说。

既然知道了什么是质数,什么是合数,那么判断一个数是质数还是合数,关键是看什么?

引导学生明确:关键看因数的个数,一个数如果只有1和它本身两个因数,这个数就是质数,如果有两个以上因数,这个数就是合数。

四、师生学习教材24页的例1。

老师:除了用找因数的方法判断一个数是质数还是合数,还可以用查质数表的方法。

1、师引导学生找出30以内的质数。

提问:这些数里有质数、合数和1,现在要保留30以内的质数,其他的数应该怎么办?(先划去1,)再划去什么?(再划去2以外的偶数)最后划去什么?(最后划去3、5的倍数,但3、5本身不划去)剩下的都是什么数?(剩下的就是30以内的质数。)

(特殊记忆20以内的质数,因为它常用。)

2、小组探究100以内的质数。

3、汇报100以内的质数。师生共同整理100以内的质数表。

4、应用100以内质数表:

练习:

(1)有的奇数都是质数吗?

(2)所有的偶数都是合数吗?

五、思维训练。

有两个质数,它们的和是小于100的奇数,并且是17的倍数。求这两个数。

六、课堂小结。

这节课你学会了什么?(质数和合数)什么叫质数?(一个数只有1和它本身两个因数,这样的数叫做质数)什么叫合数?(一个数除了1和它本身外还有别的因数的,这样的数叫做合数。)你会判断质数和合数吗?判断的关键是什么?(看这个数因数的个数。)

反思:在设计质数与合数这一节课时,我用“细心观察、全面概括、准确判断”这一主线贯穿全课。并在每个新知的后面都设计了一个小练习。以便及时巩固和加深对新知的理解和记忆。最后的思维训练,是给本节课学得很好的学生一个思维的提升。小结又针对全班学生做了新知的概括。

在学生找20以内各数的因数时,我应该注重探索,体现自主。就是放手让学生自己想办法以最短的时间找出各数因数,并在我的引导下按因数的个数给各数分类,最终得出质数和合数的概念。在以后的学习中我应当多多提倡自主探索性学习,注重“学习过程”,而不是急于看到结果。让学生成为自主自动的思想家,在学习新知识时根据已积累的知识经验有所选择、判断、解释、运用,从而有所发现、有所创造。

五年级下册数学教案 篇2

教学目标:

知识与技能

1、理解容积的含义,体会容积和体积的关系。

2、认识常用的容积单位,感知建立升和毫升的容积观念。

3、掌握容积的计算方法,能进行单位之间的换算。

过程与方法

1、经历容积概念的探究与理解过程。

2、通过比较,明确容积单位与体积单位的区别和联系。

情感态度与价值观

1、培养学生的观察能力和探究意识。在探索未知的过程中体验学习数学的乐趣,培养学生积极、主动地参与学习和探究活动的态度。

2、渗透“事物之间是相互联系的”这一辩证唯物主义的思想。

教学重点:建立容积的观念,掌握容积单位之间的进率。

教学难点:理解容积与体积的联系与区别。

教学过程:

一、创故事情景

今天老师带来一位神通广大、变化多端的孙悟空,它可厉害呢,有72变。

二、复习导入

第一变 回忆

(1) 什么叫体积?

(2) 体积单位有哪些?它们之间的进率是什么?

(3) 体积的计算方法是什么?

三、探究新知

第二变 思考

1、教学容积概念。

运用你的预习知识,把魔方、电饭褒、雪梨、汽车的油箱这四种物品分成两类,你是怎样分的?说明理由。

生:空心的 能装东西的

师:你在生活中见过哪些空心的,能装东西的物品?

生:举实例 (饭盒、矿泉水瓶、奶牛盒……)

师:你想知道这些容器里面能装多少东西吗?

这就是我们今天学习的内容:容积和容积单位 (板书)

什么叫容积?从中国文字的字面解释 容:容纳 积:体积。合起来:像电饭褒、汽车的油箱等所能容纳物体的体积,叫它的容积。

练习

根据容积定义判断:

(1)电饭褒的体积就是它的容积( )

计量容积一般可以用体积单位( )

(2)数学书P53页第一题。

突出:体积 (外面量数据) 容积(里面量数据)板书

2、教学容积单位:升和毫升

师:请同学们再仔细观察你带来的物品,看看能否找到有关容积的数学信息?

生:500毫升 18.9升

师:升、毫升就是我们今天要学习的容积单位。板书

生:净含量:250毫升 1升……

师:表示什么意思?净含量:250毫升表示瓶子里水的体积是250毫升。而不是瓶子的容积是250毫升,也不是瓶子的体积是250毫升

(选1升和1立方分米来对比,为实验作铺垫)

回应:计量容积,一般用体积单位,什么时候用容积单位?计量液体的体积,用容积单位 板书

练习:(1)四人小组互相说说各自收集物品的容积。

(2)老师也收集了一些物品,考考大家的眼力。出示:数学书P53第三题

3、教学容积单位与体积单位之间的换算。

师:谁知道这两个容积单位之间的进率是多少?生:1000。

师:你是怎么知道的?

生:书上写的。

师:你对这个关系不表示怀疑吗?真理总是通过实践来证明的,想验证一下,你有方法吗?

由学生做实验:1升的冰红茶、500毫升的量杯、1立方分米的容器。

师:从实验中你证实了1升=1000毫升,还得出什么结论?

生:1升=1立方分米。

如此类推:你还能推理出什么关系?

生:1毫升=1立方厘米 1立方米=1000升

练习:数学书P52做一做第一题和P53第四题

第三变:计算

4、教学容积的计算

出示例5,一种小汽车的油箱,里面长5d m ,宽4d m ,高2d m 。这个油箱可以装汽油多少升?

指一名学生读题。(突出容积的计算方法与体积计算方法相同)

(1)分析理解题意:求“这个油箱可以装汽油多少升?”就是求这个油箱的什么?必须知道什么条件?是否具备?怎样算?结果是什么?怎么办?(为什么要改单位?求容积)

(2)学生做完后集体订正。

第四变:运用

四、应用知识,解决问题

咳两声,讲了一节课,老师口干了,很想喝水。

师:谁知道一个正常人每天要喝多少水才合适才健康?

生:1500毫升、1000毫升……

师:你是从哪里知道的?

生:书里介绍的。

师:我们一起来看看数学书P52了解更多的课外知识。同时渗透节约用水的教育。

小组活动:

(要求组长分工要明确:不同的人负责倒水、记录、计算以及汇报,倒水要注意别溢出来,注意纪律。)

(1)将一瓶约( )毫升的矿泉水倒在纸杯中,看看可以倒满几杯。

(2)估计一下,一纸杯水大约有多少毫升,几纸杯水大约是1 L,正常人一天喝多少杯才健康?

全班分享

五、总结质疑

今天学习了容积和容积单位,你有什么收获?

六、拓展延伸,发展思维

作业:

1 、到商店、超市调查标有容积单位的商品及净含量,编一道有道容积计算的题目并解答。

2、调查一大桶约18升的矿泉水和一瓶500毫升矿泉水的单价,算一算,一大桶矿泉水相当于几瓶这样的小瓶矿泉水,买哪种比较合算?

教学反思:通过这节课,我体会到教师应在尊重教材的基础上,根据学生的实际有目的地对教材内容进行改编和加工,使教材变得生动,更贴近学生实际。例如课本上是在认识容积和容积单位后学习容积的计算的,而在后面的设计中我让学生先观察自己手中的盒子(自备的墨水盒、饼干盒等)的空间形状,再动手操作量出盒子里面的长、宽、高,并计算出盒子的容积,这就变成了学生身边的实际问题,有利于激发学生解决这些问题的欲望。在解决实际问题的过程中,学生应用知识解决问题的能力得到了提高,也让学生体会到“数学是解决实际问题的一种方法。”

教学反思:

在练习题目中,涉及到新课的内容可以再次点出,再次让学生加深印象,这样就节约了时间。在常规课堂中,切忌概念的讲授花费很多时间,概念讲得越多,学生可能越糊涂。其实学生头脑里已经对新概念有所认识和体会,我们只需要把新概念与旧概念的区别和联系讲清楚就行。

数学五年级下册教案(精选9 篇3

教学内容

教科书18-19页

教学目标:

1结合具体情境,体验数学与日常生活的密切联系。

2、在解决实际问题的过程中,培养学生应用知识和学习数学的兴趣。

教学过程:

我有见解活动程序与教师提示活动内容关注要点

一、回顾圆的知识

圆:曲线图形

圆的组成:圆心、半径、直径

圆心决定位置,半径决定大小。直径、半径都有无数条。

圆的特点:在同一圆里,所有的半径都相等,直径是半径的2倍;圆是轴对称图形,有无数条对称轴。小组之间相互交流是否掌握圆的特征

二、回顾圆周长和圆面积计算公式推导的过程

圆的周长c=πd或c=2πr回忆圆周长、面积计算公式的推导过程。

三、做自主练习6、8题

第6题是利用圆的知识解决自然现象中的数学问题,水波传送的距离就是圆的半径,水波的面积就是圆的面积。

第8题求组合图形的面积,体会图形之间的关系,能熟练地运用不同图形面积公式计算。学生口答长方形的面积,正方形面积,梯形面积的公式。关注梯形的面积计算公式。

四、做自主练习10、11题。

10题先让学生独立解决,然后交流

11题是实际操作并计算的题目。

计算后,引导学生观察计算结果,体会两圆的半径比,周长比,直径比是相等的。学生口答:要求扩建后圆形花坛的周长与面积,需要先求出扩建后花坛直径。关注测量的方法正确。

五、课堂小结

这节课你有什么收获?学生总结本节课所学知识。

五年级下册数学教案 篇4

教学目标:

1、认识常用的体积单位:立方厘米、立方分米、立方米,在数学活动中建立体积是1立方厘米、1立方分米、1立方米的空间观念。

2、自主探索得出相邻体积单位之间的进率,发展学生的空间观念,培养学生的推理能力。

3、培养学习类比能力,从已有知识——面积单位引发思考,初步了解体积单位和面积单位之间的联系与区别。

4、在动手操作、观察比较、质疑反思等活动中,培养团队意识,提升合作精神与质疑能力。

教学重点:

初步建立体积是1立方厘米、1立方分米、1立方米的空间观念,能正确应用体积单位估算常见物体的体积。

教学难点:

通过探索,自主推算出相邻体积单位间的进率。

教学准备:

多媒体课件、体积单位模型、彩泥、魔方等。

教学过程:

一、创设情境,引发思考

师:上一节课,我们认识了体积,什么是物体的体积?

问:体积有大有小,小胖和小巧运用所学知识搭积木、比体积。哪个体积比较大?(生生交流)

师:今天这节课就让我们一起来探究体积单位(揭示课题:体积单位)。

二、合作学习,探究新知

(一)探寻学生已有知识:

问:关于体积单位你已经了解了些什么?让我们先相互交流一下!(生生交流)

(预设:知道常用体积单位有立方厘米、立方分米、立方米,并会用字母表示)

【设计意图:教学是从学生原有的基础和经验出发的,了解学生已知的,分析他们未知的,有针对性地设计教学,才能构建高效课堂

(二)建立1cm3、1dm3、1m3的空间观念

1、建立1立方厘米的空间观念:

(1)初步感知1cm3有多大:

问:让我们先畅所欲言,你认为1cm3有多大?哪些物体接近1 cm3?(课件展示)

【设计意图:“你认为1cm3有多大?”引导学生用自己的方式表达自己心中1立方厘米的大小,或用身边的物体参照、或用手势比划,或对或错,形式不一的表达方式,更激发了学生探究的热情——究竟1立方厘米有多大。】

<>>

(2)触类旁通,定义1 cm3的大小:

师:我们已经知道边长为1cm的正方形,面积是1cm2,你能触类旁通定义1 cm3的大小吗?(同桌讨论)

【设计意图:在教学中,我们应当注意对学生迁移意识的培养,也就是说要注重运用类比的思想。】

(3)进一步感知1cm3的大小:

做一做:请大家四人为一小组,用彩泥捏出一些体积是1立方厘米的正方体。拼一拼,2立方厘米、5立方厘米、10立方厘米分别有多大。

(4)想一想,填一填:

师:我们知道计量一个物体的体积,就是看它含有多少个体积单位。下列长方体或正方体是用几个1立方厘米的正方体积木搭出的?体积是多少?(课件展示)

2、建立1立方分米、1立方米的空间观念:

(1)举一反三:从1 cm3定义1 dm3、1 m3的大小。(生生交流)

【设计意图:在类比的基础上尝试举一反三,不仅使数学知识容易理解,而且对概念的记忆有水到渠成之感,自然、简洁,从而激发起学生的创造力。】

(2)想象一下:1 dm3、1 m3有多大?哪些物体接近1 dm3、1 m3?(学生举例,课件、教具辅助)

【设计意图:学会定义1dm3和1m3,不等同于就能正确感悟它们实际的空间大小,教师事先准备了3阶魔方、4阶魔方和1个标准1dm3的模型,让学生选择哪一个立方体更接近1dm3,学生通过观察、猜测、验证,从而获得对知识的真正意义。】

(3)学生活动:4个同学为一组,手拉手,围出一个大约1m3的空间。

【设计意图:用3根1m长的木条做成一个互成直角的架子,放在墙角,想象一下1m3的空间有多大。这样的想象也能提升学生对1立方米的空间观念,但是如果能创造一个有趣的学生活动,让学生们在实践活动中体验1立方米的大小,不仅提升了团队协作能力,而且在做中学,更能有效帮助学生建立体积是1立方米的空间大小。】

3、练习(用合适的体积单位表示下面物体):

一块橡皮的体积约是8( )。

一台录音机的体积约是10( )。

运货集装箱的体积约是40( )。

一本新华字典的体积约是0.4( )。

一个西瓜的体积约是5( )。

一间教室的体积约是180( )。

(三)继续类比,探究相邻体积单位间的进率:

1、师:学好知识要能触类旁通,今天我们从已知知识cm2、dm2、m2出发,探索了cm3、dm3、m3这一新知识,同时我们也要关注它们的区别,它们有哪些区别呢?(同桌交换意见

2、追问:cm2、dm2、m2每相邻两个面积单位间的进率是100,猜想一下cm3、dm3、m3相邻体积单位间的进率又是多少呢?(学生猜想)

【设计意图:安排“猜想”有两层含义,一是进一步引导学生关注到面积单位与体积单位间的区别,更重要的是为了让学生掌握知识、提升能力,我们必须带领学生“再创造”,虽然知识是前人证明和研究出来的,但我们更应该让学生也像数学家们一样学会自己发现,“没有大胆的猜想就做不出伟大的发现”(牛顿)。】

3、验证:你们有什么好方法证明1cm3和1dm3间的关系呢?(课件辅助演示1个——10个——100个——1000个的过程)

【设计意图:在小学数学教学中,我们应当重视“猜想—验证”这一重要思想方法的渗透与培养,使学生在猜想验证中获得探究的乐趣。】

4、运用:同桌合作,请说一说1dm3和1m3间的关系。(课件演示)

5、拓展:通过探究,我们知道每相邻两个体积单位之间的进率是1000,你们还有什么疑问吗?(预设:你能试着说一说1cm3和1m3之间的关系吗?)

【设计意图:学生自己提出探索1cm3和1m3之间的关系,进一步激发学生探究的热情。同时也继续渗透类比的思想方法,或用100×100×100,或用1000×1000,鼓励学生能多角度思考与验证,收获成功的喜悦。】

三、动手操作,质疑反思:(机动,也可作为课后拓展)

学生活动:用一些棱长为1厘米的小正方体,做下面的活动。

1、用4个小正方体可以摆成一个大正方体吗?

2、最少要用多少个小正方体才可以摆成一个大正方体?

3、你能再摆一个大一些的正方体吗?用了多少个小正方体?

【设计意图:以“猜想—验证”为核心,引导学生多角度探索问题,发现规律,并打通与体积单位进率之间的关系。】

四、总结全课,感悟学习方法

师:通过今天的学习,你有哪些新的收获?(生生互动)

小结:今天我们从已知知识cm2、dm2、m2出发,探索了cm3、dm3、m3这一新知识,学习就要学会触类旁通、举一反三。