《2020高二数学题合集》
高二数学要怎么学好?认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。今天小编在这给大家整理了高二数学题大全,接下来随着小编一起来看看吧!
高二数学题(一)
题型1:统计概念及简单随机抽样
例1.为调查参加运动会的1000名运动员的年龄情况,从中抽查了100名运动员的年龄,就这个问题来说,下列说法正确的是( )
A.1000名运动员是总体 B.每个运动员是个体
C.抽取的100名运动员是样本 D.样本容量是100
解析:这个问题我们研究的是运动员的年龄情况,因此应选D。
答案:D
点评:该题属于易错题,一定要区分开总体与总体容量、样本与样本容量等概念。
例2.今用简单随机抽样从含有6个个体的总体中抽取一个容量为2的样本。问:① 总体中的某一个体在第一次抽取时被抽到的概率是多少?②个体不是在第1次未被抽到,而是在第2次被抽到的概率是多少?③ 在整个抽样过程中,个体被抽到的概率是多少?
解析:(1),(2),(3)。
点评:由问题(1)的解答,出示简单随机抽样的定义,问题( 2 )是本讲难点。基于此,简单随机抽样体现了抽样的客观性与公平性。
题型2:系统抽样
例3.为了了解参加某种知识竞赛的1003名学生的成绩,请用系统抽样抽取一个容量为50的样本。
解析:(1)随机地将这1003个个体编号为1,2,3,...,1003.
(2)利用简单随机抽样,先从总体中剔除3个个体(可利用随机数表),剩下的个体数1000能被样本容量50整除,然后再按系统抽样的方法进行.
点评:总体中的每个个体被剔除的概率相等,也就是每个个体不被剔除的概率相等.采用系统抽样时每个个体被抽取的概率都是,所以在整个抽样过程中每个个体被抽取的概率仍然相等,都是。
例4.(2004年福建,15)一个总体中有100个个体,随机编号为0,1,2,...,99,依编号顺序平均分成10个小组,组号依次为1,2,3,...,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m,那么在第k小组中抽取的号码个位数字与m+k的个位数字相同.若m=6,则在第7组中抽取的号码是___________.
剖析:此问题总体中个体的个数较多,因此采用系统抽样.按题目中要求的规则抽取即可.
∵m=6,k=7,m+k=13,∴在第7小组中抽取的号码是63.
答案:63
点评:当总体中个体个数较多而差异又不大时可采用系统抽样。采用系统抽样在每小组内抽取时应按规则进行。
高二数学题(二)
题型3:分层抽样
例5.(2006湖北文,19)某单位最近组织了一次健身活动,活动分为登山组和游泳组,且每个职工至多参加了其中一组。在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%。登山组的职工占参加活动总人数的,且该组中,青年人占50%,中年人占40%,老年人占10%。为了了解各组不同的年龄层次的职工对本次活动的满意程度,现用分层抽样的方法从参加活动的全体职工中抽取一个容量为200的样本。试确定
(Ⅰ)游泳组中,青年人、中年人、老年人分别所占的比例;
(Ⅱ)游泳组中,青年人、中年人、老年人分别应抽取的人数。
解析:(Ⅰ)设登山组人数为,游泳组中,青年人、中年人、老年人各占比例分别为a、b、c,则有,解得b=50%,c=10%.
故a=100%-50%-10%=40%,即游泳组中,青年人、中年人、老年人各占比例分别为40%、
50%、10%。
(Ⅱ)游泳组中,抽取的青年人数为(人);
抽取的中年人数为50%=75(人);
抽取的老年人数为10%=15(人)。
点评:本小题主要考查分层抽样的概念和运算,以及运用统计知识解决实际问题的能力。
例6.(2006四川文,5)甲校有3600名学生,乙校有5400名学生,丙校有1800名学生,为统计三校学生某方面的情况,计划采用分层抽样法,抽取一个样本容量为90人的样本,应在这三校分别抽取学生()
A.30人,30人,30人 B.30人,45人,15人
C.20人,30人,10人 D.30人,50人,10人
解析:B;
点评:根据样本容量和总体容量确定抽样比,最终得到每层中学生人数。
题型4:综合问题
例7.(1)(2004年湖南,5)某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点.公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为②.则完成①、②这两项调查宜采用的抽样方法依次是
A.分层抽样法,系统抽样法 B.分层抽样法,简单随机抽样法
C.系统抽样法,分层抽样法 D.简单随机抽样法,分层抽样法
分析:此题为抽样方法的选取问题.当总体中个体较多时宜采用系统抽样;当总体中的个体差异较大时,宜采用分层抽样;当总体中个体较少时,宜采用随机抽样.
依据题意,第①项调查应采用分层抽样法、第②项调查应采用简单随机抽样法.故选B.
答案:B
(2)(2005湖北卷理第11题,文第12题)某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,...,270;使用系统抽样时,将学生统一随机编号1,2,...,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况:
①7,34,61,88,115,142,169,196,223,250;
②5,9,100,107,111,121,180,195,200,265;
③11,38,65,92,119,146,173,200,227,254;
④30,57,84,111,138,165,192,219,246,270;
关于上述样本的下列结论中,正确的是 ( )
A.②、③都不能为系统抽样 B.②、④都不能为分层抽样
C.①、④都可能为系统抽样 D.①、③都可能为分层抽样
解析:D。
点评:采用什么样的抽样方法要依据研究的总体中的个体情况来定。
高二数学题(三)
高二数学题(四)
高二数学题(五)
2020高二数学题合集相关文章: