首页 > 学习方法 > 高中学习方法 > 高三学习方法 > 高三数学 > 高考文科数学重要考点大全汇总正文

《高考文科数学重要考点大全汇总》

时间:

  高考文科数学相对比理科数学而言会简单许多,想必很多人都想知道高考文科数学的核心知识点。接下来是小编为大家整理的高考文科数学重要考点大全,希望大家喜欢!

  高考文科数学重要考点大全一

  考点一:集合与简易逻辑

  集合部分一般以选择题出现,属容易题。重点考查集合间关系的理解和认识。近年的试题加强了对集合计算化简能力的考查,并向无限集发展,考查抽象思维能力。在解决这些问题时,要注意利用几何的直观性,并注重集合表示方法的转换与化简。简易逻辑考查有两种形式:一是在选择题和填空题中直接考查命题及其关系、逻辑联结词、“充要关系”、命题真伪的判断、全称命题和特称命题的否定等,二是在解答题中深层次考查常用逻辑用语表达数学解题过程和逻辑推理。

  考点二:函数与导数

  函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数(一次和二次函数、指数、对数、幂函数)的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。导数部分一方面考查导数的运算与导数的几何意义,另一方面考查导数的简单应用,如求函数的单调区间、极值与最值等,通常以客观题的形式出现,属于容易题和中档题,三是导数的综合应用,主要是和函数、不等式、方程等联系在一起以解答题的形式出现,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。

  考点三:三角函数与平面向量

  一般是2道小题,1道综合解答题。小题一道考查平面向量有关概念及运算等,另一道对三角知识点的补充。大题中如果没有涉及正弦定理、余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查平面向量为主的试题,要注意数形结合思想在解题中的应用。向量重点考查平面向量数量积的概念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、共线等问题是“新热点”题型.

  考点四:数列与不等式

  不等式主要考查一元二次不等式的解法、一元二次不等式组和简单线性规划问题、基本不等式的应用等,通常会在小题中设置1到2道题。对不等式的工具性穿插在数列、解析几何、函数导数等解答题中进行考查.在选择、填空题中考查等差或等比数列的概念、性质、通项公式、求和公式等的灵活应用,一道解答题大多凸显以数列知识为工具,综合运用函数、方程、不等式等解决问题的能力,它们都属于中、高档题目.

  考点五:立体几何与空间向量

  一是考查空间几何体的结构特征、直观图与三视图;二是考查空间点、线、面之间的位置关系;三是考查利用空间向量解决立体几何问题:利用空间向量证明线面平行与垂直、求空间角等(文科不要求).在高考试卷中,一般有1~2个客观题和一个解答题,多为中档题。

  考点六:解析几何

  一般有1~2个客观题和1个解答题,其中客观题主要考查直线斜率、直线方程、圆的方程、直线与圆的位置关系、圆锥曲线的定义应用、标准方程的求解、离心率的计算等,解答题则主要考查直线与椭圆、抛物线等的位置关系问题,经常与平面向量、函数与不等式交汇,考查一些存在性问题、证明问题、定点与定值、最值与范围问题等。

  考点七:算法复数推理与证明

  高考对算法的考查以选择题或填空题的形式出现,或给解答题披层“外衣”.考查的热点是流程图的识别与算法语言的阅读理解.算法与数列知识的网络交汇命题是考查的主流.复数考查的重点是复数的有关概念、复数的代数形式、运算及运算的几何意义,一般是选择题、填空题,难度不大.推理证明部分命题的方向主要会在函数、三角、数列、立体几何、解析几何等方面,单独出题的可能性较小。对于理科,数学归纳法可能作为解答题的一小问.

  考点八:概率与统计

  概率:由于文理选修内容的不同,有关概率内容在高考中所占比重不大,试题中具有一定的灵活性、机动性。重点以互斥事件、古典概型的概率计算为主,以实际应用形式出现的多以选择题、填空题为主。对于理科,结合选修中排列、组合的知识对随机事件进行考察,多以解答题的形式出现。几何概型是近年来新增考察内容之一,题目难度不大,但需要准确理解题意,利用图形分析问题,在高考中多以选择题、填空题形式出现。

  统计:随机抽样、用样本估计总体是基本题(中、低档题为主),多以选择题、填空题的形式出现,以实际问题为背景,综合考查学生应用基础知识、解决实际问题的能力,热点问题是分层抽样、系统抽样、频率分布直方图和用样本的数字特征估计总体的数字特征,文科试题中会出现解答题.

  概率与统计(理):重点以随机变量及其分布列的概念和基本计算为主,题型以选择、填空为主,有时也以解答题形式出现,即以实际情景为主,建立合适的分布列,通过均值和方差解释实际问题;

  统计案例:主要包括回归分析、独立性检验的基本思想和初步应用,是教材新增内容,高考中必须在试题之前给出公式后作为选择或填空题.

  高考文科数学重要考点大全二

  一.知识归纳:

  1.集合的有关概念。

  1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素

  注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。

  ②集合中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。

  ③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件

  2)集合的表示方法:常用的有列举法、描述法和图文法

  3)集合的分类:有限集,无限集,空集。

  4)常用数集:N,Z,Q,R,N

    2.子集、交集、并集、补集、空集、全集等概念。

  1)子集:若对x∈A都有x∈B,则A B(或A B);

  2)真子集:A B且存在x0∈B但x0 A;记为A B(或,且 )

  3)交集:A∩B={x| x∈A且x∈B}

  4)并集:A∪B={x| x∈A或x∈B}

  5)补集:CUA={x| x A但x∈U}

  注意:①? A,若A≠?,则? A ;

  ②若, ,则 ;

  ③若且 ,则A=B(等集)

  3.弄清集合与元素、集合与集合的关系,掌握有关的术语和符号,特别要注意以下的符号:(1) 与、?的区别;(2) 与 的区别;(3) 与的区别。

  4.有关子集的几个等价关系

  ①A∩B=A A B;②A∪B=B A B;③A B C uA C uB;

  ④A∩CuB = 空集 CuA B;⑤CuA∪B=I A B。

  5.交、并集运算的性质

  ①A∩A=A,A∩? = ?,A∩B=B∩A;②A∪A=A,A∪? =A,A∪B=B∪A;

  ③Cu (A∪B)= CuA∩CuB,Cu (A∩B)= CuA∪CuB;

  6.有限子集的个数:设集合A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。

  二.例题讲解:

  【例1】已知集合M={x|x=m+ ,m∈Z},N={x|x= ,n∈Z},P={x|x= ,p∈Z},则M,N,P满足关系

  A) M=N P B) M N=P C) M N P D) N P M

  分析一:从判断元素的共性与区别入手。

  解答一:对于集合M:{x|x= ,m∈Z};对于集合N:{x|x= ,n∈Z}

  对于集合P:{x|x= ,p∈Z},由于3(n-1)+1和3p+1都表示被3除余1的数,而6m+1表示被6除余1的数,所以M N=P,故选B。

  分析二:简单列举集合中的元素。

  解答二:M={…, ,…},N={…, , , ,…},P={…, , ,…},这时不要急于判断三个集合间的关系,应分析各集合中不同的元素。

  = ∈N, ∈N,∴M N,又 = M,∴M N,

  = P,∴N P 又 ∈N,∴P N,故P=N,所以选B。

  点评:由于思路二只是停留在最初的归纳假设,没有从理论上解决问题,因此提倡思路一,但思路二易人手。

  变式:设集合, ,则( B )

  A.M=N B.M N C.N M D.

  解:

  当时,2k+1是奇数,k+2是整数,选B

  【例2】定义集合A_={x|x∈A且x B},若A={1,3,5,7},B={2,3,5},则A_的子集个数为

  A)1 B)2 C)3 D)4

  分析:确定集合A_子集的个数,首先要确定元素的个数,然后再利用公式:集合A={a1,a2,…,an}有子集2n个来求解。

  解答:∵A_={x|x∈A且x B}, ∴A_={1,7},有两个元素,故A_的子集共有22个。选D。

  变式1:已知非空集合M {1,2,3,4,5},且若a∈M,则6?a∈M,那么集合M的个数为

  A)5个 B)6个 C)7个 D)8个

  变式2:已知{a,b} A {a,b,c,d,e},求集合A.

  解:由已知,集合中必须含有元素a,b.

  集合A可能是{a,b},{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e}.

  评析本题集合A的个数实为集合{c,d,e}的真子集的个数,所以共有个 .

  【例3】已知集合A={x|x2+px+q=0},B={x|x2?4x+r=0},且A∩B={1},A∪B={?2,1,3},求实数p,q,r的值。

  解答:∵A∩B={1} ∴1∈B ∴12?4×1+r=0,r=3.

  ∴B={x|x2?4x+r=0}={1,3}, ∵A∪B={?2,1,3},?2 B, ∴?2∈A

  ∵A∩B={1} ∴1∈A ∴方程x2+px+q=0的两根为-2和1,

  ∴ ∴

  变式:已知集合A={x|x2+bx+c=0},B={x|x2+mx+6=0},且A∩B={2},A∪B=B,求实数b,c,m的值.

  解:∵A∩B={2} ∴1∈B ∴22+m?2+6=0,m=-5

  ∴B={x|x2-5x+6=0}={2,3} ∵A∪B=B ∴

  又 ∵A∩B={2} ∴A={2} ∴b=-(2+2)=4,c=2×2=4

  ∴b=-4,c=4,m=-5

  【例4】已知集合A={x|(x-1)(x+1)(x+2)>0},集合B满足:A∪B={x|x>-2},且A∩B={x|1

  分析:先化简集合A,然后由A∪B和A∩B分别确定数轴上哪些元素属于B,哪些元素不属于B。

  解答:A={x|-21}。由A∩B={x|1-2}可知[-1,1] B,而(-∞,-2)∩B=ф。

  综合以上各式有B={x|-1≤x≤5}

  变式1:若A={x|x3+2x2-8x>0},B={x|x2+ax+b≤0},已知A∪B={x|x>-4},A∩B=Φ,求a,b。(答案:a=-2,b=0)

  点评:在解有关不等式解集一类集合问题,应注意用数形结合的方法,作出数轴来解之。

  变式2:设M={x|x2-2x-3=0},N={x|ax-1=0},若M∩N=N,求所有满足条件的a的集合。

  解答:M={-1,3} , ∵M∩N=N, ∴N M

  ①当时,ax-1=0无解,∴a=0 ②

  综①②得:所求集合为{-1,0, }

  【例5】已知集合 ,函数y=log2(ax2-2x+2)的定义域为Q,若P∩Q≠Φ,求实数a的取值范围。

  分析:先将原问题转化为不等式ax2-2x+2>0在 有解,再利用参数分离求解。

  解答:(1)若 , 在 内有有解

  令当 时,

  所以a>-4,所以a的取值范围是

  变式:若关于x的方程 有实根,求实数a的取值范围。

  解答:

  点评:解决含参数问题的题目,一般要进行分类讨论,但并不是所有的问题都要讨论,怎样可以避免讨论是我们思考此类问题的关键。

  高考文科数学重要考点大全三

  1.集合的基本运算(含新定集合中的运算,强调集合中元素的互异性);

  2.常用逻辑用语(充要条件,全称量词与存在量词的判定);

  3.函数的概念与性质(奇偶性、对称性、单调性、周期性、值域值最小值);

  4.幂、指、对函数式运算及图像和性质

  5.函数的零点、函数与方程的迁移变化(通常用反客为主法及数形结合思想);

  6.空间体的三视图及其还原图的表面积和体积;

  7.空间中点、线、面之间的位置关系、空间角的计算、球与多面体外接或内切相关问题;

  8.直线的斜率、倾斜角的确定;直线与圆的位置关系,点线距离公式的应用;

  9.算法初步(认知框图及其功能,根据所给信息,几何数列相关知识处理问题);

  10.古典概型,几何概型理科:排列与组合、二项式定理、正态分布、统计案例、回归直线方程、独立性检验;文科:总体估计、茎叶图、频率分布直方图;

  11.三角恒等变形(切化弦、升降幂、辅助角公式);三角求值、三角函数图像与性质;

  12.向量数量积、坐标运算、向量的几何意义的应用;

  13.正余弦定理应用及解三角形;

  14.等差、等比数列的性质应用、能应用简单的地推公式求其通项、求项数、求和;

  15.线性规划的应用;会求目标函数;

  16.圆锥曲线的性质应用(特别是会求离心率);

  17.导数的几何意义及运算、定积分简单求法

  18.复数的概念、四则运算及几何意义;

  19.抽象函数的识别与应用;

  高考文科数学重要考点大全四

  结束了以基础知识、基本技能为重点的一轮复习后,张老师带领学生进入了二轮复习。“这个复习阶段的重点是数学思想方法的归结和认识的提高。”张老师说,今年的高考说明与去年相比有了较大的变化,增加了不少知识点,他认为这些内容都将在高考中体现,建议学生重点复习。

  让我们来看看这些新知识点。函数方面,增加了幂函数、函数与方程、函数模型与应用,立体几何增加了立视图、算法初步,减去了空间向量,增加了几何模型、减去了独立事件、圆锥曲线,增加了推想与证明。张老师认为,这些新内容是新课标的体现,高考一定会涉及,建议学生作为重点进行复习。

  通过二轮复习的模拟考试,张老师发现多数学生基本达到了一轮复习的要求,但是还存在基本技能不够熟练、应用能力不足的缺陷,尤其是数型结合、运算变形、公式变换、空间想象等方面,依然需要加强。在此,他提出了几点复习中的注意事项,希望给考生一点帮助:

  一、梳理基本知识,形成知识网络。

  二、整理错题集。对于错题,不要看、背,而是重新做一遍。

  三、要善于总结,包括解题思路和运算方法,知道做题方法一定要算对数。

  四、提高复习的主动性。单纯听老师讲解是被动的,要结合自己的情况听讲,有针对性地总结和归纳。

  五、考试时不能要求自己超常发挥,只要发挥正常水平即可,放松心态。

  张老师提醒考生,考试中遇到难题不要纠缠,放弃几个题是很正常的,但是会做的题一定要一遍成功。此外,高考题目的情节设计一般是陌生的,学生不必慌,关键在于理解题意。记者李凤

  点津老师

  张立生,烟台二中文科重点班数学老师,山东省高级教师,从教25年,编写过多种教学材料。

  高考文科数学重要考点大全五

  高三文科数学三角函数知识点

  一、基础知识

  定义1角,一条射线绕着它的端点旋转得到的图形叫做角。若旋转方向为逆时针方向,则角为正角,若旋转方向为顺时针方向,则角为负角,若不旋转则为零角。角的大小是任意的。

  高三文科数学三角函数定义2角度制,把一周角360等分,每一等价为一度,弧度制:把等于半径长的圆弧所对的圆心角叫做一弧度。360度=2π弧度。若圆心角的弧长为L,则其弧度数的绝对值|α|=L/r,其中r是圆的半径。


高考文科数学重要考点大全相关文章

1.文科高考数学考点汇总

2.高考文科数学知识点整理

3.高考文科数学知识点总结

4.文科高考数学必考考点

5.高考文科数学必考考点

6.高考文科数学知识点

7.高二文科数学知识点汇总

8.文科高考数学重点知识点

9.高三数学知识点梳理

10.高三数学知识点考点总结大全