《纳米材料论文范文【通用16篇】》
在日常学习、工作生活中,许多人都写过论文吧,论文是对某些学术问题进行研究的手段。那么,怎么去写论文呢?
纳米材料论文范文 1
1.1以单细胞生物体为模板制备纳米材料细胞是生物体结构和功能的基本单位,而细胞表面的细胞膜是由磷脂双分子层和镶嵌其中的蛋白质等构成的。不同的细胞有着独特精制的外形结构和功能化的表面,以单细胞为模板可以合成不同生物细胞形貌的纳米结构。
1.1.1以原核细胞为模板制备纳米材料细菌和放线菌被广泛应用于金属纳米颗粒的合成,其中一个原因就是它们相对易于操作。最早着手研究的Jha等[2]用乳酸杆菌引导在室温下合成了尺寸为8~35nm的TiO2纳米粒子,并提出了与反应相关的机理。随着纳米材料的生物合成的逐渐发展,现在已成功合成了以不同菌为模板的不同形貌的纳米材料。Klaus等[3]在假单胞菌(Pseudomonasstutzeri)的细胞不同结合位点处制备并发现了三角形,六边形和类球形的Ag纳米粒子,其粒径达200nm。Ahmad等[4]从一种昆虫体内提取了比基尼链霉菌(Streptomycesbikiniensis),并以此制备出3~70nm的球形Ag纳米颗粒。Nomura等[5]以大肠杆菌为模板成功制备出平均孔径为2.5nm的杆状中空SiO2,其比表面积达68.4m2/g。
1.1.2以真核细胞为模板制备纳米材料真核细胞相比较原核细胞种类更为广泛,培养更为方便,所 最简单的单细胞真核生物小球藻可以富集各种重金属,例如铀、铜、镍等[6]。Fayaz等[7]以真菌木霉菌(Trichodermaviride)为模板在27℃下合成了粒径为5~40nm的Ag纳米粒子,并且发现青霉素,卡那霉素和红霉素等的抗菌性在加入该Ag纳米粒子后明显提高。Lin等[8]发现HAuCl4中金离子在毕赤酵母(Pichiapastoris)表面先发生了生物吸附然后进行生物还原,从而得到Au纳米粒子。研究发现金离子被酵母菌表面的氨基、羟基和其它官能团首先还原成一价金离子,并进一步被还原成Au纳米颗粒。Mishra等[9]以高里假丝酵母(Candidaguilliermondii)为模板合成了面心立方结构的Au和Ag纳米粒子,两种纳米粒子对金黄色葡萄球菌有很高的抗菌性,但所做的对比试验表明化学方法合成的两种粒子对致病菌均不具有抗菌性。Zhang等[10]则以酵母菌为模板合成了形貌均一Co3O4修饰的ZnO中空结构微球。尖孢镰刀菌(Fusariu-moxysporum)[11]可以在其自身表面将米糠的无定型硅生物转化成结晶SiO2,形成2~6nm的准球形结构。
1.2以多细胞生物体为模板制备纳米材料虽然以单细胞为模板制备的纳米粒子的单分散性较好,但是要涉及到生物体复杂的培养过程及后续处理,而以多细胞生物体为模板的制备方法就显得更加方便简捷。
1.2.1以多细胞植物体为模板制备纳米材料地球上的植物种类很多,以其为模板的纳米材料的生物合成也就多种多样。多数情况下是将植物体培养在含有金属离子的溶液中,然后将植物体除去便可得到复制了植物体微结构的纳米材料。Rostami等[12]将油菜和苜蓿的种子培养在含有Au3+的溶液中,将金离子变成纳米Au粒子,其大小分别是20~128nm和8~48nm。Dwivedi等[13]以藜草(Chenopodiumalbum)为模板分别制备出平均粒径为12nm和10nm的Ag和Au纳米晶体,� Cyganiuk等[14]以蒿柳(Salixviminalis)和金属盐为原料制备出碳基混合材料LaMnO3。将蒿柳培植在含有金属盐的溶液中,金属盐离子顺着植物组织进行传输,进而渗透其中。然后将木质素丰富的植物体部位在600~800℃范围进行煅烧碳化,得到的产物对正丁醇转化成4-庚酮有很好的催化效果。黄保军等[15]以定性滤纸通过浸渍和煅烧等一系列过程仿生合成了微纳米结构的Fe2O3,并且对其形成机理进行了初步探讨。Cai等[16]以发芽的大豆为模板,制备出室温下便有超顺磁性的Fe3O4纳米粒子,其平均粒径仅为8nm。王盟盟等[17]以山茶花花瓣为模板通过浸渍煅烧制备出CeO2分层介孔纳米片,并且在可见光波段有很好的催化活性。
1.2.2以多细胞动物体为模板制备纳米材料以多细胞动物体为模板的纳米材料的制备比较少,其中以Anshup等[18]的研究较为突出。他们分别试验了人体的癌变宫颈上皮细胞、神经细胞和未癌变正常的人类胚胎肾细胞。这些人体细胞在模拟人体环境的试管中进行培养,培养液中含有1mmol/L的HAuCl4。最终得到20~100nm的Au纳米颗粒。细胞核和细胞质中都有Au纳米粒子沉积,并且发现细胞核周围的Au粒子粒径比细胞质中的小。
2以生物体提取物或组成成分中的有效成分制备纳米材料
生物体中含有很多还原稳定性成分,如果将这些成分提取出来,就可以脱离生物体原有形貌的束缚,得到绿色无污染的生物还原剂,进而以其制备纳米材料。很多糖类,维生素,纤维素等生物组成成分也被证实有很好的生物还原稳定作用,这就使得纳米材料的绿色生物合成更加方便快捷。
2.1以微生物提取物为有效成分制备纳米材料以微生物的提取物为活性成分制备的纳米材料多数是纳米Ag和纳米Au,而且这两种粒子具有杀菌的效果。而以微生物提取物制备的纳米材料粒径更小,并且普遍也比一般化学方法合成的粒子有更好的杀菌效果[9]。Gholami-Shabani等[19]从尖孢镰刀菌(Fusariumoxysporum)中提取了硝酸盐还原酶,并用其还原得到平均粒径为50nm的球形纳米Ag颗粒,并且对人类的病原菌和细菌有很好的抗菌效果。Wei等[20]和Velmurugan等[21]分别用酵母菌和枯草杆菌提取液成功合成了不同粒径及形貌的纳米Ag颗粒。提取物中的还原性酶是促进反应进行的重要成分。Inbakandan等[22]将海洋生物海绵中提取物与HAuCl4反应制备得到粒径为7~20nm的纳米Au颗粒,主要得益于其中的水溶性有机还原性物质。Song等[23]则从嗜热古菌(hyperther-mophilicarchaeon)中提取出高耐热型腾冲硫化纺锤形病毒1(Sulfolobustengchongensisspindle-shapedvirus1)的病毒蛋白质外壳。并且发现实验条件下在没有遗传物质时其蛋白质外壳仍可自组装成轮状纳米结构。与TiO2纳米粒子呈现出很好的亲和能力,在纳米材料的生物合成中将有广阔的应用前景。
2.2以植物提取物为有效成分制备纳米材料生物提取物制备纳米材料的研究最多的是针对植物提取物的利用,因为地球上植物种类众多,为纳米材料的生物合成提供了众多可能性。Ahmed等[24]以海莲子植物(Salicorniabrachiata)提取液还原制得Au纳米颗粒,其粒径为22~35nm。制备出的样品对致病菌有很大的抗菌性,而且能催化硼氢化钠还原4-硝基苯酚为4-氨基苯酚,也可催化亚甲基蓝转化成无色亚甲蓝。Velmurugan等[25]和Kulkarni[26]分别用腰果果壳提取液和甘蔗汁成功制备出纳米Ag和纳米Ag/AgCl复合颗粒,其均有很好的杀菌效果。Sivaraj等[27]用一种药用植物叶子(Tabernaemontana)的提取液制备了对尿路病原体大肠杆菌有抑制作用的球形CuO纳米颗粒,其平均粒径为48nm。
2.3以生物组成成分为有效成分制备纳米材料碳水化合物是生物体中最丰富的有机化合物,分为单糖、淀粉、纤维素等。其独特的结构和成分可以用来合成各种结构的纳米材料。Panacek等[28]测试了两种单糖(葡萄糖和半乳糖)和两种二糖(麦芽糖和乳糖)对[Ag(NH3)2]+的还原效果,其中由麦芽糖还原制备的纳米Ag颗粒的平均粒径为25nm,并且对包括耐各种抗生素的金黄葡萄球菌在内的革兰氏阳性菌和革兰氏阴性菌有很好的抑制作用。Gao等[29]和Abdel-Halim等[30]分别用淀粉和纤维素还原硝酸银制得了不同粒径的Ag纳米粒子,对一些菌体同样有很好的抗菌性。维生素是人体不可缺少的成分,在人类机体的新陈代谢过程中发挥着重要作用,是很好的稳定剂和还原剂。Hui等[31]用维生素C还原制备了Ag纳米颗粒修饰的氧化石墨烯复合材料,将加有维生素C的AgNO3和氧化石墨烯溶液进行超声反应,得到的Ag纳米颗粒平均粒径为15nm,并附着在氧化石墨烯纳米片表面。Nadagouda等[32]用维生素B2为还原活性成分室温下合成了不同形貌(纳米球、纳米线、纳米棒)的纳米Pd。并且发现在不同的溶剂中制备的纳米材料的形貌和大小不同。
3以病毒为模板制备纳米材料
病毒本身没有生物活性,可以寄宿于其它宿主细胞进行自我复制,其实际上是一段有保护性外壳的DNA或RN段,大小通常处于20~450nm之间,其纳米级的大小使得以其为模板更易于制备出纳米材料。Shenton等[33]以烟草花叶病毒为模板制备了Fe3O4纳米管。因为烟草花叶病毒是由呈螺旋形排列的蛋白质单元构成,内部形成中空管。 由于烟草花叶病毒的尺寸小但稳定性高,使得它被频频用� Dang等[37]则以转基因M13病毒为模板制备了单壁碳纳米管-TiO2晶体核壳复合纳米材料。实验发现
4结论
纳米材料论文 2
1.1炭干凝胶的制备
传统炭凝胶的制备一般经过有机凝胶的形成、干燥和炭化过程3个步骤,炭干凝胶的具体合成步骤如下:首先采用间苯二酚和甲醛为原料在碱性催化剂下合成聚合物中间体,再经过进一步的交联形成空间网络状结构的气凝胶;然后在常压下直接蒸发干燥;最后在惰性气氛(氮气或氩气)或真空条件下高温炭化。经上述步骤制得的炭干凝胶具有比表面积大、导电性能好等特性。炭干凝胶是指在干燥步骤采用常压干燥的方式制备所得的材料。尽管常压干燥会引起材料孔道塌陷,但因其成本低�
1.2炭干凝胶的改性
近年来,国内外学者采用掺杂和复合的方法对炭干凝胶进行改性,改善并提升了其物理化学性质,使其更为广泛地应用于各个领域。
1.2.1氮掺杂炭干凝胶
Castilla等采用3-羟基吡啶等为氮源合成了氮掺杂炭干凝胶,研究结果表明,采用不同的原料配比和不同的炭化温度(500~900℃)可以得到一系列氮含量不同的炭干凝胶。Gorgulho等在间苯二酚和甲醛为原料的基础上,添加三聚氰胺和尿素为氮源,成功合成了氮掺杂炭干凝胶,以调控炭干凝胶的表面功能基团。结果表明,经过氮源掺杂合成的炭干凝胶,材料的表面碱度均有提升。
1.2.2金属掺杂炭干凝胶
为了增强炭干凝胶的导电、催化等性能,很多学者成功制备了各种金属掺杂的炭干凝胶。Pramanik等成功合成了锰、钴和钙等金属掺杂的炭干凝胶,研究了金属掺杂对材料比表面积及形貌的影响。研究结果表明,当间苯二酚与甲醛摩尔比为0.35,初始酚醛树脂溶液pH为3.0,掺杂的锰盐同间苯二酚质量比为11%时,得到的锰掺杂炭干凝胶比表面积最大。Liu等对铁、钴和镍掺杂的炭干凝胶进行了表征,并对其磁性进行了检测。结果表明,不同金属掺杂对炭干凝胶的结构性质有显著影响,3种金属掺杂的炭干凝胶在室温下均呈现出典型的铁磁特性。
1.2.3炭干凝胶复合材料
Gomes等采用溶胶-凝胶法合成了二氧化钛-炭干凝胶的复合材料,炭干凝胶作为载体增强了二氧化钛与铂颗粒的结合作用,该复合材料也成功应用于铂纳米颗粒的光化学沉积。此外,Fernández等成功合成了碳纳米管-炭干凝胶的复合材料,通过循环伏安法、充放电等手段对该复合材料的电化学性质进行测试后发现,碳纳米管的引入提升了材料的电容,而且在提升材料有效固相电导率的同时,还提升了液相电导率。
2炭干凝胶的应用研究进展
2.1储氢
近年来,多孔炭材料因其具有高比表面积和轻质的网状结构被广泛地应用于储氢领域。Tian等采用酸性催化剂合成了炭干凝胶,并测试了其储氢性能。结果表明,在pH为4.8的条件下合成的炭干凝胶,比表面积为1924m2/g,微孔容积为0.86cm3/g。在温度为77K以及压力为3.9MPa的条件下,合成所得炭干凝胶的储氢量为4.65%(wt,质量分数),证实了炭干凝胶是一种极具前景的储氢材料。
2.2电化学领域
炭干凝胶由于具有成本低廉、高比表面积和高电导率等优良性能,是一种理想的电极材料。FernNdez等将炭干凝胶用于电化学超级电容器,通过循环伏安法、计时电势分析法及交流阻抗测试研究了电容器阻抗理化参数同电化学行为之间的关系,研究结果表明炭干凝胶具有极高的比电容,可达280F/g。此外,炭凝胶电容器电吸附去除水溶液中重金属和无机盐的研究表明炭干凝胶用作电吸附剂在水体净化等领域拥有广阔的应用空间。
2.3催化剂及其载体
炭干凝胶所具备的比表面积大、稳定性好、高度交联的多孔结构等特性使 Xin等采用锰掺杂的炭干凝胶作为催化剂,进行了液相放电等离子体去除微囊藻毒素的研究,随着炭干凝胶的加入,微囊藻毒素的去除率从75.3%提升到90.2%,并提出了相应的氧化-吸附动力学模型。Xu等将炭干凝胶作为金催化剂的载体,并筛选了用于苯甲醇选择性氧化的最佳载体,原因在于炭干凝胶材料表面具有足量的含氧官能团。Rodrigues等同样将金催化剂负载于炭干凝胶上,并将其用于甘油的氧化,通过改变炭干凝胶的中孔大小来改变催化剂的选择性。此外,Ale-gre等将铂负载在炭干凝胶上用来催化甲醇的电氧化,同催化剂Pt/E-TEK相比,其催化性能提升了2倍多。炭干凝胶还可以用作用作质子交换膜燃料电池的催化剂载体,该催化剂具有较高的循环电压和一氧化碳及甲醇氧化电流,并且在采用炭干凝胶作为催化剂载体的燃料电池中,贵金属颗粒的烧结趋势很小。还有许多研究人员将炭干凝胶作为催化剂用于污染物的催化氧化。CA等研究了炭干凝胶以及二氧化铈掺杂的炭干凝胶催化臭氧氧化的性能。对草酸的催化臭氧氧化结果表明,所有的催化剂均能在1h内将其全部降解。
2.4环境保护领域
在环境保护领域,炭干凝胶已广泛地应用于水处理方面。Ca等将炭干凝胶应用于亚甲基蓝的吸附。结果表明,炭干凝胶微孔容积和微孔比表面积的增加能够显著提升其对亚甲基蓝的吸附量,并且通过朗格缪尔模型计算得到的结合能同商业的微孔活性炭相比有了45倍的提升。Figueiredo等将制备得到的炭干凝胶用于2种阴离子染料的吸附,获得了良好的吸附效果。Almazan等研究了炭干凝胶结构特性对于挥发性有机物***动力学吸附的影响,结果表明吸附量同孔容密切相关,而且内扩散的传质阻力同孔结构密切相关。此外,Girgis等将炭干凝胶用于水中铜离子的吸附,吸附量为32~130mg/g,该研究为去除水体中的重金属离子提供了一种新型的纳米级多孔性炭材料。
3结语与展望
炭干凝胶作为一种新型的纳米材料。具有许多独特的性能,在近年来引起了广泛关注。针对目前存在的问题,炭干凝胶今后努力的方向大致为以下几个方面。
(1)制备工艺的完善与创新。
虽然目前国内外已经成功合成了不同孔径结构的炭干凝胶,并采用各种手段对其进行了性能改良,但是离实现产业化还有一定的距离。寻求适合工业发展的制备工艺,简化流程、降低生产成本是今后努力的方向。
(2)理论体系的完善。
尽管目前已经对炭干凝胶合成的机理有了很深入的研究,但如何实现孔径结构的完全可控还需要进一步的研究。此外,在炭干凝胶网络结构的形成机理以及聚合单体的生长动力学等方面也需要进一步的努力。
(3)应用领域的进一步拓展。
虽近年来炭干凝胶的应用研究已经涉及到各个领域,已取得相应的研究成果,但总体而言应用范围还需要进一步探索和开发。
纳米材料论文 3
纯金属锌及其氧化物和不同纳米Au修饰量的金属锌及其氧化物的紫外可见光谱。可以看出,波长为368nm处出现一个比较强的金属锌及其氧化物吸收峰。在525nm处出现较宽的纳米Au的吸收峰[4]。纳米Au的吸收峰随Au含量的变大而不断变强,还伴随显著的红移现象[5]。可能是因为Au和金属锌及其氧化物之间的相互作用,致使纳米Au的吸收峰产生了显著的红移现象,可能给金属锌及其氧化物材料的气敏特性有重要作用。图2是纯金属锌及其氧化物和不同纳米Au修饰量的金属锌及其氧化物的XRD谱图。可以看出,谱线中存在很明显的六方相特征衍射峰,和金属锌及其氧化物的晶面吻合[6]。另外,加入纳米Au修饰量的金属锌及其氧化物谱线出现新的衍射峰,其峰位与立方相Au的晶面一一对应。纳米Au修饰量的衍射峰随着Au含量的变大而不断的变强。图3是纯金属锌及其氧化物和纳米Au修饰量在为10%时的金属锌及其氧化物的SEM形貌。可以看出,金属锌及其氧化物是由大量向外辐射分布的六棱锥纳米分枝构成的复杂的花型结构。金属锌及其氧化物的六棱锥分枝的表面比较光滑。金属锌及其氧化物的表面上均匀的分布着纳米Au粒子,金属锌及其氧化物的六棱锥分枝的表面出现了粗化的现象。这种粗化现象会导致表面缺陷的增加,对金属锌及其氧化物材料气敏特性有积极作用。
2金属锌及其氧化物的气敏特性
图4是纯金属锌及其氧化物和不同纳米Au修饰量的金属锌及其氧化物气敏元件,在不同温度下对100μg/g丙酮的灵敏度图线。可以看出,纳米Au粒子可以有效地提高金属锌及其氧化物材料的灵敏氧化物对丙酮的选择性非常好,可以满足实际的丙酮气体检测要求。另外,材料各种气体的响应程度随气体浓度的增加基本呈线性逐渐变大。
图5为金属锌及其氧化物对不同气体的响应恢复动态曲线和灵敏度。可以看出,材料对还原性气体的灵敏度较高。另外,材料对丙酮的灵敏度比氢气、甲醛、苯和乙醇高得多,这说明Au修饰后金属锌及其氧化物对丙酮的选择性非常好,可以满足实际的丙酮气体检测要求。另外,材料各种气体的响应程度随气体浓度的增加基本呈线性逐渐变大。
3结论
(1)利用化学浴法制得的氧化锌,是由大量向外辐射分布的六棱锥纳米分枝构成的复杂的花型结构,纳米Au粒子修饰后,金属锌及其氧化物的表面上均匀的分布着纳米Au粒子,金属锌及其氧化物的基本形貌和晶体结构并没有改变,只是其六棱锥分枝的表面出现了粗化的现象。(2)对于丙酮气体来说,纳米Au粒子可以有效地提高金属锌及其氧化物的灵敏度,而且在纳米Au修饰量为10%、工作温度为270℃时,金属锌及其氧化物材料的气敏特性最好。
纳米材料论文范文 4
40多年以前,科学家们就认识到实际材料中的无序结构是不容忽视的。许多新发现的物理效应,诸如某些相转变、量子尺寸效应和有关的传输现象等,只出现在含有缺陷的有序固体中。事实上,如果多晶体中晶体区的特征尺度(晶粒或晶畴直径或薄膜厚度)达到某种特征长度时(如电子波长、平均自由程、共格长度、相关长度等),材料的性能将不仅依赖于晶格原子的交互作用,也受其维数、尺度的减小和高密度缺陷控制。有鉴于此,HGleitCr认为,如果能够合成出晶粒尺寸在纳米量级的多晶体,即主要由非共格界面构成的材料[例如,由50%(invol.)的非共植晶界和50%(invol.)的晶体构成],其结构将与普通多晶体(晶粒大于lmm)或玻璃(有序度小于2nm)明显不同,称之为"纳米晶体材料"(nanocrystallinematerials)。后来,人们又将晶体区域或其它特征长度在纳米量级范围(小于100nn)的材料广义定义为"纳米材料"或"纳米结构材料"(nanostructuredmaterials)。由于其独特的微结构和奇异性能,纳米材料引起了科学界的极大关注,成为世界范围内的研究热点,其领域涉及物理、化学、生物、微电子等诸多学科。目前,广义的纳米材料的主要?ǎ?BR>l)清洁或涂层表面的金属、半导体或聚合物薄膜;2)人造超晶格和量子讲结构;功半结晶聚合物和聚合物混和物;4)纳米晶体和纳米玻璃材料;5)金属键、共价键或分子组元构成的纳米复合材料。
经过最近十多年的研究与探索,现已在纳米材料制备方法、结构表征、物理和化学性能、实用化等方面取得显著进展,研究成果日新月异,研究范围不断拓宽。本文主要从材料科学与工程的角度,介绍与评述纳米金属材料的某些研究进展。
2纳米材料的制备与合成
材料的纳米结构化可以通过多种制备途径来实现。这些方法可大致归类为"两步过程"和"一步过程"。"两步过程"是将预先制备的孤立纳米颗粒因结成块体材料。制备纳米颗粒的方法包括物理气相沉积(PVD)、化学气相沉积(CVD)、微波等离子体、低压火焰燃烧、电化学沉积、溶胶一凝胶过程、溶液的热分解和沉淀等,其中,PVD法以"惰性气体冷凝法"最具代表性。"一步过程"则是将外部能量引入或作用于母体材料,使其产生相或结构转变,直接制备出块体纳米材料。诸如,非晶材料晶化、快速凝固、高能机械球磨、严重塑性形变、滑动磨损、高能粒子辐照和火花蚀刻等。目前,关于制备科学的研究主要集中于两个方面:l)纳米粉末制备技术、理论机制和模型。目的是改进纳米材料的品质和产量;2)纳米粉末的固结技术。以获得密度和微结构可控的块体材料或表面覆层。
3纳米材料的奇异性能
1)原子的扩散行为
原子扩散行为影响材料的许多性能,诸如蠕变、超塑性、电性能和烧结性等。纳米晶Co的自扩散系数比Cu的体扩散系数大14~16个量级,比Cu的晶界自扩散系数大3个量级。Wurshum等最近的工作表明:Fe在纳米晶N中的扩散系数远低于早期报道的结果。纳米晶Pd的界面扩散数据类似于普通的晶界扩散,这很可能是由于纳米粒子固结成的块状试样中的残留疏松的影响。他们还报道了Fe在非晶FeSiBNbCu(Finemete)晶化形成的复相纳米合金(由Fe3Si纳米金属间化合物和晶间的非晶相构成)中的扩散要比在非晶合金中快10~14倍,这是由于存在过剩的热平衡空位。Fe在Fe-Si纳米晶中的扩散由空位调节控制。
2)力学性能
目前,关于纳米材料的力学性能研究,包括硬度、断裂韧性、压缩和拉伸的应力一应变行为、应变速率敏感性、疲劳和蠕变等已经相当广泛。所研究的材料涉及不同方法制备的纯金属、合金、金属间化合物、复合材料和陶瓷。研究纳米材料本征力学性能的关键是获得内部没有(或很少)孔隙、杂质或裂纹的块状试样。由于试样内有各种缺陷,早期的许多研究结果已被最近取得的结果所否定。样品制备技术的日臻成熟与发展,使人们对纳米材料本征力学性能的认识不断深入。
许多纳米纯金属的室温硬度比相应的粗晶高2~7倍。随着晶粒的减小,硬度增加的现象几乎是不同方法制备的样品的一致表现。早期的研究认为,纳米金属的弹性模量明显低于相应的粗晶材料。例如,纳米晶Pd的杨氏和剪切模量大约是相应全密度粗晶的70%。然而,最近的研究发现,这完全是样品中的缺陷造成的,纳米晶Pd和Cu的弹性常数与相应粗晶大致相同,屈服强度是退火粗晶的10~15倍。晶粒小子50nm的Cu韧性很低,总延伸率仅1%~4%,晶粒尺寸为110nm的Cu延伸率大于8%。从粗晶到15urn,Cu的硬度测量值满足HallPetch关系;小于15nm后,硬度随晶粒尺寸的变化趋于平缓,虽然硬度值很高,但仍比由粗晶数据技HallPetch关系外推或由硬度值转换的估计值低很多。不过,纳米晶Cu的压缩屈服强度与由粗晶数据的HallPetCh关系外推值和测量硬度的值(Hv/3)非常吻合,高密度纳米晶Cu牙DPd的压缩屈服强度可达到1GPa量级。
尽管按照常规力学性能与晶粒尺寸关系外推,纳米材料应该既具有高强度,又有较高韧性。但迄今为止,得到的纳米金属材料的韧性都很低。晶粒小于25nm时,其断裂应变仅为<5%,远低于相应粗晶材料。主要原因是纳米晶体材料中存在各类缺陷、微观应力及界面状态等。用适当工艺制备的无缺陷、无微观应力的纳米晶体Cu,其拉伸应变量可高达30%,说明纳米金属材料的韧性可以大幅度提高。纳米材料的塑性变形机理研究有待深入。
纳米晶金属间化合物的硬度测试值表明,随着晶粒的减小,在初始阶段(类似于纯金属盼情况)发生硬化,进一步减小晶粒,硬化的斜率减缓或者发生软化。由硬化转变为软化的行为是相当复杂的,但这些现象与样品的制备方法无关。材料的热处理和晶粒尺寸的变化可能导致微观结构和成份的变化,如晶界、致密性、相变、应力等,都可能影响晶粒尺寸与硬度的关系。
研究纳米晶金属间化合物的主要动机是探索改进金属间化合物的室温韧性的可能性。Bohn等首先提出纳米晶金属化合物几种潜在的优越性。其中包括提高强度和韧性。Haubold及合作者研究了IGC法制备的NiAl的力学性能,但仅限于单一样品在不同温度退火后的硬度测量。Smith通过球磨NiAl得到晶粒尺寸从微米级至纳米级的样品,进行了"微型盘弯曲试验",观察到含碳量低的材料略表现出韧性,而含碳多的材料没有韧性。最近Choudry等用"双向盘弯曲试验"研究了纳米晶NiAl,发现晶粒小于10nm时,屈服强度高干粗晶NiAl,且在室温下有韧性,对形变的贡献主要源于由扩散控制的晶界滑移。室温压缩实验显示由球磨粉末固结成的纳米晶Fe-28Al-2Cr具有良好的塑性(真应变大于1.4),且屈服强度高(是粗晶的1O倍)。测量TiAl(平均晶粒尺寸约10nm)的压缩蠕变(高温下测量硬度随着恒载荷加载时间的变化)表明,在起始的快速蠕变之后,第二阶段蠕变非常缓慢,这意味着发生了扩散控制的形变过程。低温时(低于扩散蠕变开始温度),纳米晶的硬度变化很小。观察到的硬度随着温度升高而下降,原因之一是压头载荷使样品进一步致密化,而主要是因为材料流变加快。Mishra等报道,在750~950°C,10-5~10-3s-1的应?渌俾史段В擅拙i-47.5Al-3Cr(g-TiAl)合金的形变应力指数约为6,说明其形变机制为攀移位错控制。
值得注意的是,最近报道了用分子动力学计算机模拟研究纳米材料的致密化过程和形变。纳米Cu丝的模拟结果表明,高密度晶界对力学行为和塑性变形过程中的晶界迁移有显著影响。纳米晶(3~5nm)Ni在低温高载荷塑性变形的模拟结果显示,其塑性变形机制主是界面的粘滞流动、晶界运动和晶界旋转,不发生开裂和位错发散,这与粗晶材料是截然不同的。
3)纳米晶金属的磁性
早期的研究发现。纳米晶Fe的饱和磁化强度试比普通块材a-Fe约低40%。Wagner等用小角中子散射(SANS)实验证实纳米晶Fe由铁磁性的晶粒和非铁磁性(或弱铁磁性)的界面区域构成,界面区域体积约占一半。纳米晶Fe的磁交互作用不仅限于单个晶粒,而且可以扩展越过界面,使数百个晶粒磁化排列。
Daroezi等证实球磨形成的纳米晶Fe和Ni的饱和磁化强度与晶粒尺寸(50mm~7nm)无关,但纳米晶的饱和磁化曲线形状不同于微米晶材料。随着晶粒减小,矫顽力显著增加。Schaefer等报道,纳米晶Ni中界面原子的磁拒降低至0.34mB/原子(块状Ni为0.6mB/原子),界面组份的居里温度(545K)比块状晶体Ni的(630K)低。最近的研究还发现,制备时残留在纳米晶Ni中的内应力对磁性的影响很大,纳米晶Ni的饱和磁化强度与粗晶Ni基本相同。
Yoshizawa等报道了快淬的FeCuNbSiB非晶在初生晶化后,软磁性能良好,可与被莫合金和最好的Co基调合金相媲美,且饱和磁化强度很高(Bs约为1.3T)。其典型成份为Fe73.5Cu1Nb3Si13.5B9称为"Finemet"。性能最佳的结构为a-Fe(Si)相(12~20nm)镶嵌在剩余的非晶格基体上。软磁性能好的原因之一被认为是铁磁交互作用。单个晶粒的局部磁晶体各向异性被有效地降低。其二是晶化处理后,形成富Si的a-Fe相,他和磁致伸缩系数ls下降到2′10-6。继Finemet之后,90年代初又发展了新一族纳米晶软磁合金Fe-Zr-(Cu)-B-(Si)系列(称为''''Nanoperm")。退火后,这类合金形成的bcc相晶粒尺寸为10~20nm,饱和磁化强度可达1.5~1.7T,磁导率达到48000(lkHz)。铁芯损耗低,例如,Fe86Zr7B6Cu1合金的铁芯损耗为66mW·g-1(在1T,50Hz条件下),比目前做变压器铁芯的Fe78Si9B13非晶合金和bccFe-3.5%Si合金小45%和95%,实用前景非常诱人。
4)催化及贮氢性能
在催化剂材料中,反应的活性位置可以是表面上的团簇原子,或是表面上吸附的另一种物质。这些位置与表面结构、晶格缺陷和晶体的边角密切相关。由于纳米晶材料可以提供大量催化活性位置,因此很适宜作催化材料。事实上,早在术语"纳米材料"出现前几十年,已经出现许多纳米结构的催化材料,典型的如Rh/Al2O3、Pt/C之类金属纳米颗粒弥散在情性物质上的催化剂。已在石油化工、精细化工合成、汽车排气许多场合应用。
Sakas等报道了纳米晶5%(inmass)Li-MgO(平均直径5.2nm,比表面面积750m2·g-1)的催化活性。它对甲烷向高级烃转化的催化效果很好,催化激活温度比普通Li浸渗的MgO至少低200°C,尽管略有烧结发生,纳米材料的平均活性也比普通材料高3.3倍。
Ying及合作者利用惰性气氛冷凝法制成高度非化学当量的CeO2-x纳米晶体,作为CO还原SO2、CO氧化和CH4氧化的反应催化剂表现出很高的活性。活化温度低于超细的化学当量CeO2基材料。例如,选择性还原SO2为S的反应,可在500°C实现100%转换,而由化学沉淀得到的超细CeO2粉末,活化温度高达600°C。掺杂Cu的Cu-CeO2-x纳米复合材料可以使SO2的反应温度降低到420°C。另外,CeO2-x纳米晶在SO2还原反应中没有活性滞后,且具有超常的抗CO2毒化能力。还能使CO完全转化为CO2的氧化反应在低于100°C时进行,这对冷起动的汽车排气控制非常有利。值得注意的是这样的催化剂仅由较便宜的金属构成,毋须添加资金属元素。
FeTi和Mg2Ni是贮氢材料的重要候选合金。其缺点是吸氢很慢,必须进行活化处理,即多次地进行吸氢----脱氢过程。Zaluski等最近报道,用球磨Mg和Ni粉末可直接形成化学当量的Mg2Ni,晶粒平均尺寸为20~30nm,吸氢性能比普通多晶材料好得多。普通多晶Mg2Ni的吸氢只能在高温下进行(如果氢压力小于20Pa,温度必须高于250°C),低温吸氢则需要长时间和高的氢压力,例如200°C、120bar(lbar=0.1Mpa),2天。纳米晶Mg2Ni在200°C以下,即可吸氢,毋须活化处理。300°C第一次氢化循环后,含氢可达~3.4%(inmass)。在以后的循环过程中,吸氢比普通多晶材料快4倍。纳米晶FeTi的吸氢活化性能明显优于普通多晶材料。普通多晶FeTi的活化过程是:在真空中加热到400~450℃,随后在约7Pa的H2中退火、冷却至室温再暴露于压力较高(35~65Pa)的氢中,激活过程需重复几次。而球磨形成的纳米晶FeTi只需在400℃真空中退火0.5h,便足以完成全部的氢吸收循环。纳米晶FeTi合金由纳米晶粒和高度无序的晶界区域(约占材料的20%~30%)构成。
4纳米材料应用示例
目前纳米材料主要用于下列方面:
l)高硬度、耐磨WC-Co纳米复合材料
纳米结构的WC-Co已经用作保护涂层和切削工具。这是因为纳米结构的WC-Co在硬度、耐磨性和韧性等方面明显优于普通的粗晶材料。其中,力学性能提高约一个量级,还可能进一步提高。高能球磨或者化学合成WC-Co纳米合金已经工业化。化学合成包括三个主要步骤:起始溶液的制备与混和;喷雾干燥形成化学性均匀的原粉末;再经流床热化学转化成为纳米晶WC-Co粉末。喷雾干燥和流床转化已经用来批量生产金属碳化物粉末。WC-Co粉末可在真空或氢气氛下液相烧结成块体材料。VC或Cr3C2等碳化物相的掺杂,可以抑制烧结过程中的晶粒长大。
2)纳米结构软磁材料
Finemet族合金已经由日本的HitachiSpecialMetals,德国的VacuumschmelzeGmbH和法国的Imply等公司推向市场,已制造销售许多用途特殊的小型铁芯产品。日本的AlpsElectricCo.一直在开发Nanoperm族合金,该公司与用户合作,不断扩展纳米晶Fe-Zr-B合金的应用领域。
3)电沉积纳米晶Ni
电沉积薄膜具有典型的柱状晶结构,但可以用脉冲电流将其破碎。精心地控制温度、pH值和镀池的成份,电沉积的Ni晶粒尺寸可达10nm。但它在350K时就发生反常的晶粒长大,添加溶质并使其偏析在晶界上,以使之产生溶质拖拽和Zener粒子打轧效应,可实现结构的稳定。例如,添加千分之几的磷、流或金属元素足以使纳米结构稳定至600K。电沉积涂层脉良好的控制晶粒尺寸分布,表现为Hall-Petch强化行为、纯Ni的耐蚀性好。这些性能以及可直接涂履的工艺特点,使管材的内涂覆,尤其是修复核蒸汽发电机非常方便。这种技术已经作为EectrosleeveTM工艺商业化。在这项应用中,微合金化的涂层晶粒尺寸约为100nm,材料的拉伸强度约为锻造Ni的两倍,延伸率为15%。晶间开裂抗力大为改善。
4)Al基纳米复合材料
Al基纳米复合材料以其超高强度(可达到1.6GPa)为人们所关注。其结构特点是在非晶基体上弥散分布着纳米尺度的a-Al粒子,合金元素包括稀土(如Y、Ce)和过渡族金属(如Fe、Ni)。通常必须用快速凝固技术(直接淬火或由初始非晶态通火)获得纳米复合结构。但这只能得到条带或雾化粉末。纳米复合材料的力学行为与晶化后的非晶合金相类似,即室温下超常的高屈服应力和加工软化(导致拉神状态下的塑性不稳定性)。这类纳米材料(或非晶)可以固结成块材。例如,在略低于非晶合金的晶化温度下温挤。加工过程中也可以完全转变为晶体,晶粒尺寸明显大干部份非晶的纳米复合材料。典型的Al基体的晶粒尺寸为100~200nm,镶嵌在基体上的金属间化合物粒子直径约50nm。强度为0.8~1GPa,拉伸韧性得到改善。另外,这种材料具有很好的强度与模量的结合以及疲劳强度。温挤Al基纳米复合材料已经商业化,注册为GigasTM。雾化的粉末可以固结成棒材,并加工成小尺寸高强度部件。类似的固结材料在高温下表现出很好的超塑:在1s-1的高应变速率下,延伸率大于500%。
5结语
在过去十多年里,尽管纳米材料的研究已经取得了显著进展,但许多重要问题仍有待探索和解决。诸如,如何获得清洁、无孔隙、大尺寸的块体纳米材料,以真实地反映纳米材料的本征结构与性能?如何开发新的制备技术与工艺,实现高品质、低成本、多品种的纳米材料产业化?纳米材料的奇异性能是如何依赖于微观结构(晶粒尺寸与形貌、晶界等缺陷的性质、合金化等)的?反之,如何利用微观结构的设计与控制,发展具有新颖性能的纳米材料,以拓宽纳米材料的应用领域?某些传统材料的局域纳米化能否为其注入新的生命力?如何实现纳米材料的功能与结构一体化?如何使纳米材料在必要的后续处理或使用过程中保持结构与性能的稳定性?等等。这些基本问题是进一步深入研究纳米材料及其实用化的关键,也是纳米材料研究被称为"高风险与高回报并存"的原因。
纳米材料论文 5
1982年,Boutonmt首先报道了应用微乳液制备出了纳米颗粒:用水合胼或者氢气还原在W/O型微乳液水核中的贵金属盐,得到了单分散的Pt,Pd,Ru,Ir金属颗粒(3~nm)。从此以后,不断有文献报道用微乳液合成各种纳米粒子。本文从纳米粒子制备的角度出发,论述了微乳反应器的原理、形成与结构,并对微乳液在纳米材料制备领域中的应用状况进行了阐述。
1微乳反应器原理
在微乳体系中,用来制备纳米粒子的一般是W/O型体系,该体系一般由有机溶剂、水溶液。活性剂、助表面活性剂4个组分组成。常用的有机溶剂多为C6~C8直链烃或环烷烃;表面活性剂一般有AOT[2一乙基己基]磺基琥珀酸钠]。AOS、SDS(十二烷基硫酸钠)、SDBS(十六烷基磺酸钠)阴离子表面活性剂、CTAB(十六烷基三甲基溴化铵)阳离子表面活性剂、TritonX(聚氧乙烯醚类)非离子表面活性剂等;助表面活性剂一般为中等碳链C5~C8的脂肪酸。
W/O型微乳液中的水核中可以看作微型反应器(Microreactor)或称为纳米反应器,反应器的水核半径与体系中水和表面活性剂的浓度及种类有直接关系,若令W=[H2O/[表面活性剂],则由微乳法制备的纳米粒子的尺寸将会受到W的影响。利用微胶束反应器制备纳米粒子时,粒子形成一般有三种情况(可见图1、2、3所示)。
(l)将2个分别增溶有反应物A、B的微乳液混合,此时由于胶团颗粒间的碰撞,发生了水核内物质的相互交换或物质传递,引起核内的化学反应。由于水核半径是固定的,不同水核内的晶核或粒子之间的物质交换不能实现,所以水核内粒子尺寸得到了控制,例如由硝酸银和氯化钠反应制备氯化钠纳粒。
(2)一种反应物在增溶的水核内,另一种以水溶液形式(例如水含肼和硼氢化钠水溶液)与前者混合。水相内反应物穿过微乳液界面膜进入水核内与另一反应物作用产生晶核并生长,产物粒子的最终粒径是由水核尺寸决定的。例如,铁,镍,锌纳米粒子的制备就是采用此种体系。
(3)一种反应物在增溶的水核内,另一种为气体(如O2、NH3,CO2),将气体通入液相中,充分混合使两者发生反应而制备纳米颗粒,例如,Matson等用超临界流体一反胶团方法在AOT一丙烷一H2O体系中制备用Al(OH)3胶体粒子时,采用快速注入干燥氨气方法得到球形均分散的超细Al(OH)3粒子,在实际应用当中,可根据反应特点选用相应的模式。
2微乳反应器的形成及结构
和普通乳状液相比,尽管在分散类型方面微乳液和普通乳状液有相似之处,即有O/W型和W/O型,其中W/O型可 但是微乳液是一种热力学稳定的体系,它的形成是自发的,不需要外界提供能量。正是由于微乳液的形成技术要求不高,并且液滴粒度可控,实验装置简单且操作容易,所以微乳反应器作为一种新的超细颗粒的制备方法得到更多的研究和应用。
2.1微乳液的形成机理
Schulman和Prince等提出瞬时负界面张力形成机理。该机理认为:油/水界面张力在表面活性剂存在下将大大降低,一般为l~10mN/m,但这只能形成普通乳状液。要想形成微乳液必须加入助表面活性剂,由于产生混合吸附,油/水界面张力迅速降低达10-3~10-5mN/m,甚至瞬时负界面张力Y<0。但是负界面张力是不存在的,所以体系将自发扩张界面,表面活性剂和助表面活性剂吸附在油/水界面上,直至界面张力恢复为零或微小的正值,这种瞬时产生的负界面张力使体系形成了微乳液。若是发生微乳液滴的聚结,那么总的界面面积将会缩小,复又产生瞬时界面张力,从而对抗微乳液滴的聚结。对于多组分来讲,体系的Gibbs公式可表示为:
--dγ=∑Гidui=∑ГiRTdlnCi
(式中γ为油/水界面张力,Гi为i组分在界面的吸附量,ui为I组分的化学位,Ci为i组分在体相中的浓度)
上式表明,如果向体系中加入一种能吸附于界面的组分(Г>0),一般中等碳链的醇具有这一性质,那么体系中液滴的表面张力进一步下降,甚至出现负界面张力现象,从而得到稳定的微乳液。不过在实际应用中,对一些双链离子型表面活性剂如AOT和非离子表面活性剂则例外,它们在无需加入助表面活性剂的情况下也能形成稳定的微乳体系,这和它们的特殊结构有关。2.2微乳液的结构
RObbins,MitChell和Ninham从双亲物聚集体的分子的几何排列角度考虑,提出了界面膜中排列的几何排列理论模型,成功地解释了界面膜的优先弯曲和微乳液的结构问题。
目前,有关微乳体系结构和性质的研究方法获得了较大的发展,较早采用的有光散射、双折射、电导法、沉降法、离心沉降和粘度测量法等;较新的有小角中子散射和X射线散射、电子显微镜法。正电子湮灭、静态和动态荧光探针法、NMR、ESR(电子自旅共振)、超声吸附和电子双折射等。
3微乳反应器的应用——纳米颗粒材料的制备
3.1纳米催化材料的制备
利用W/O型微乳体系可以制备多相反应催化剂,Kishida。等报道了用该方法制备
Rh/SiO2和Rh/ZrO2载体催化剂的新方法。采用NP-5/环已烷/氯化铑微乳体系,非离子表面活性剂NP-5的浓度为0.5mol/L,氯化铑在溶液中浓度为0.37mol/L,水相体积分数为0.11。25℃时向体系中加入还原剂水含肼并加入稀氨水,然后加入正丁基醇锆的环乙烷溶液,强烈搅拌加热到40℃而生成淡黄色沉淀,离心分离和乙醇洗涤,80℃干燥并在500℃的灼烧3h,450℃下用氧气还原2h,催化剂命名为“ME”。通过性能检测,该催化剂活性远比采用浸渍法制得的高。
3.2无机化合物纳粒的制备
利用W/O型微乳体系也可以制备无机化合物,卤化银在照像底片乳胶中应用非常重要,尤其是纳米级卤化银粒子。用水一AOT一烷烃微乳体系合成了AgCl和AgBr纳米粒子,AOT浓度为0.15mol/L,第一个微乳体系中硝酸银为0.4mol/L,第二个微乳体系中NaCl或NaBr为0.4mol/L,混合两微乳液并搅拌,反应生成AgCl或AgBr纳米颗粒。
又以制备CaCO3为例,微乳体系中含Ca(OH)2,向体系中通入CO2气体,CO2溶入微乳液并扩散,胶束中发生反应生成CaCO3颗粒,产物粒径为80~100nm。
3.3聚合物纳粒的制备
利用W/O型微乳体系可以制备有机聚丙烯酸胺纳粒。在20mlAOTt——正己烷溶液中加入0.1mlN-N一亚甲基双丙烯酰胺(2mg/rnl)和丙烯酰胺(8mg/ml)的混合物,加入过硫酸铵作为引发剂,在氮气保护下聚合,所得产物单分散性较好。
3.4金属单质和合金的制备
利用W/O型微乳体系可以制备金属单质和合金,例如在AOT-H2O-n—heptane体系中,一种反相微胶束中含有0.lmol/LNiCl2,另一反相微胶束中含有0.2mol/LNaBH4,混合搅拌,产物经分离、干燥并在300℃惰性气体保护下结晶可得镍纳米颗粒。在某微乳体系中含有0.0564mol/L,FeC12和0.2mol/LNiCl2,另一体系中含有0.513mol/LNaBH4溶液,混合两微乳体系进行反应,产物经庚烷、丙酮洗涤,可以得到Fe-Ni合金微粒(r=30nm)。
3.5磁性氧化物颗粒的制备
利用W/O型微乳体系可以制备氧化物纳米粒子,例如在AOT-H2O-n-heptane体系中,一种乳液中含有0.15mol/LFeCl2和0.3mol/LFeCl3,另一体系中含有NH4OH,混合两种微乳液充分反应,产物经离心,用庚烷、丙酮洗涤并干燥,可以得到Fe3O4纳粒(r=4nm)。
3.6高温超导体的制备
利用W/O型微乳体系可以合成超导体,例如在水一CTAB一正丁醇一辛烷微乳体系中,一个含有机钇、钡和铜的硝酸盐的水溶液,三者之比为1:2:3;另一个含有草酸铵溶液作为水相,混合两微乳液,产物经分离,洗涤,干燥并在820℃灼烧2h,可以得到Y-Ba-Cu—O超导体,该超导体的Tc为93K。另外在阴离子表面活性剂IgegalCO-430微乳体系中,混合Bi、Pb、Sr、Ca和Cu的盐及草酸盐溶液,最终可以制得Bi-Pb-Sr-Ca-Cu—O超导体,经DC磁化率测定,可知超导转化温度为Tc=112K,和其它方法制备的超导体相比,它们显示了更为优越的性能。
目前对纳米颗粒材料的研究方法比较多,较直接的方法有电镜观测(SEM、TEM、STEM、STM等);间接的方法有电子、X一射线衍射法(XRD),中子衍射,光谱方法有EXAFS,NEXAFS,SEX-AFS,ESR,NMR,红外光谱,拉曼光谱,紫外一可见分光光度法(UV-VIS),荧光光谱及正电子湮没,动态激光光散射(DLS)等。4结语
纳米材料论文 6
1.1设计方案
压电陶瓷作为精密位移器件的主要原理是通过对其加载电压,可以实现轴线方向上的膨胀或收缩,精度可以利用稳压电源的电压加载步长控制到纳米尺度,因此被广泛地应用于精密位移器当中,诸如德国Auburn、MA、PICeramic等公司,即专门用压电陶瓷来制作各种位移器件。图1为耦合在光学显微镜下的装置示意图,该装置采用压电陶瓷作为精密位移驱动元件,压电陶瓷的左端固定,右端为一自由端,在左端固定端配备一个三自由度粗调装置,该三自由度粗调装置的一端为样品固定端A端,A端可通过三自由度粗调装置进行三个维度的位置调节。在压电陶瓷的另一端装备样品固定端B端。B端固定不可调节,为了使样品能够很好地固定在A、B两个样品固定端,可以通过三自由度粗调装置将A端平面与B端平面调节到近乎一个水平面,以确保样品是受到单轴拉伸作用力,同时将A与B端之间狭缝的距离控制在2μm以下,以确保比较短的样品可以顺利地搭载在两个样品固定端上。将搭载好样品的拉伸装置放置在光学显微镜下实现对样品的观测。光学显微镜上耦合CCD摄像系统,既可以实现动态的观测,也可以实现静态的图像捕捉,如图1所示,从外接电脑上实时监测。
1.2器件成型制作
根据上述设计原理,自行加工设计并制作了一套基于压电陶瓷柱的纳米材料拉伸装置,如图2所示。图2a为自制的拉伸装置的图片,由图片可以看出,整套装置的长度小于10cm,在该套仪器上制作了用于粗略调节A端位置的粗调旋钮,在固定端B端固定一条用于力的定量化测量的原子力悬臂梁针尖,在光学显微镜下将纳米线的两端分别固定在A、B两端,逐步调节电源的加载电压,驱动压电陶瓷发生伸长变形,驱动B端运动,实验图像或录像通过光学显微镜上的CCD成像系统传输至电脑上,在电脑上实时监测纳米线拉伸过程中的各个环节。图2b为安装的悬臂梁针尖的光学放大照片。
1.3加载力计算方法
加装了悬臂梁针尖以后,在悬臂梁变形不是很大的情况下(悬臂梁尖端所偏转的角度在5°以下时),施加在样品上的力可以通过以下方法计算出来,图3为悬臂梁受力示意图。假设偏转角度很小(小于5°),则悬臂梁所受到的力F的值可以用式(1)计算:F=KLoSinθ(1)其中,K为悬臂梁的劲度系数,Lo为悬臂梁尖端处距离底端的距离,θ为悬臂梁变形前后悬臂梁现位置与原位置之间的夹角。如果纳米线没有搭载在悬臂梁的最前端,而是搭载在了距离底端为L距离处,则此时纳米线的受力应为:F=K(Lo2/L)Sinθ,(2)此时只需在CCD捕捉到的图像上测量出θ和L的值即可计算出力的大小。
1.4拉伸装置与扫描电子显微镜的耦合
可以将该装置耦合在扫描电镜中进行原位拉伸实验,通过扫描电镜的高分辨成像系统实现纳米尺度的原位实时观测。图4为将该拉伸装置耦合在扫描电镜中的照片,从图中可以看出,由于该装置十分的小巧,可以很方便地耦合在扫描电镜中,利用扫描电镜中的微机械手(图4中黄色尖头所指示)系统还可以实现纳米材料的力、电耦合特性的测试。
2.纳米材料拉伸实例——氧化硅纳
米线力学性能的定量化表征
2.1SiO2纳米线的制备与表征
作为地壳中含量最高的组成部分——氧化硅玻璃,由于其具有非常优越的物理和化学等性能,被广泛地应用在电子、光学等各个领域,可以说随处可见氧化硅玻璃的身影。氧化硅玻璃是经高温液态快速冷却所形成的一种有着非晶态结构的物质,将其加工制成的薄膜、玻璃纤维、玻璃微柱、小颗粒、玻璃悬臂梁等在微电子和纳电子机械系统中常作为元器件使用。但是,氧化硅玻璃有一个比较致命的弱点就是常温下且体材料状态下,表现为典型的脆性断裂[9-10](氧化硅玻璃的玻璃转变温度高于1100oC[9,11]),导致脆性断裂主要是由其体材料内部存在的缺陷和微裂纹的扩展所致[12]。随着氧化硅玻璃制备的二维薄膜和其他小尺度材料广发应用在各个领域,氧化硅薄膜及维纳尺度氧化硅材料所表现出来的力学行为[13-14]就将影响以上述材料为基本单元的元器件的可靠性能及使用寿命。所以,构建微纳尺度的力学性能检测装置并系统考察该材料在微纳尺度的力学行为就显得尤为迫切,通过该项工作的开展期望对当前纳米器件的设计和开发提供必要且可靠的借鉴。本实验所采用的非晶SiO2纳米线是利用热蒸发一氧化硅粉获得的[15]。从图5a可以看出制备的SiO2纳米线的直径大都为15~50nm。纳米线的长度都在几十微米以上,甚至可以达到几百微米或毫米级别。图5b为TEM下单根SiO2纳米线的照片;图5c为图5b中纳米线的选区电子衍射图,从选区电子衍射图中可以看到,该纳米线为非晶结构特征,利用能谱分析进一步确定了纳米线的成分,如图5d所示。通过能谱分析可以断定该样品中的成分为硅和氧,从图5e给出的定量化分析上得到硅元素和氧元素的原子比大约为1:1.9(主要是由于纳米线内部存在的大量氧空位所致),非常接近1:2。
2.2氧化硅纳米线光学显微镜下的原位拉伸实验
将单根SiO2纳米线的两端分别搭载在纳米材料拉伸装置的样品固定端A、B两端,将拉伸装置放置在光学显微镜下,通过CCD系统实现原位观测,图6为从CCD录得的Movie中截取的系列拉伸照片。通过图6a~图6h,可以将悬臂梁偏转的角度计算出来,从而确定其所受到的力的大小,图6d中悬臂梁发生了角度最大的偏转,偏转角度达到了2.1°,此悬臂梁的总长度为453μm,纳米线搭载点到底端的长度为310μm,该悬臂梁的进度系数为2N/m,则根据公式(2)可计算出此时施加在纳米线上的力约为22.7μN,但是由于光学显微镜分辨率的限制,使得我们不能最终得到纳米线所发生的应变,因此无法给出应力—应变曲线,所以在更进一步的实验中将此纳米材料拉伸装置按照图4所示放入了扫描电镜中,利用扫描电镜高分辨率的成像实现了更高分辨率的原位实验。图7为一套扫描电镜中实现的氧化硅纳米线的拉伸变形实验,根据扫描电镜记录的悬臂梁的偏转角度,可以将每一步中施加在纳米线上的力计算出来,然后根据纳米线的直径及截面积可以将此单根纳米线的应力—应变曲线描绘出来。图8为此单根纳米线的应力—应变曲线图。
3.结论
1)本文设计了一种基于压电陶瓷的纳米材料拉伸装置,该装置小巧、可靠,可有效实施对单体纳米材料的拉伸变形操作,同时可以很好地与光学显微镜和扫描电子显微镜进行耦合实用,借助光学显微镜和扫描电子显微镜的高分辨率实现对拉伸样品的原位观测。2)以非晶SiO2纳米线为例在光学显微镜和扫描电子显微镜中进行了原位拉伸实验,实验表明该拉伸装置可以成功地实现单体纳米材料的拉伸变形实验;同时借助于拉伸装置中配备的悬臂梁针尖,实现了应力的定量化测试。3)该纳米材料拉伸装置不仅可以用于单体纳米线的变形实验,而且可以推广到纳米薄膜材料、加工至纳米尺度的体材料等的变形实验中,用以研究此类材料的弹塑性变形机制。诚然,由于该装置在测量力的精度上还单纯地依赖图像分辨率,因此,误差会比较大一些,但是,该装置确实是一种行之有效的测量单体纳米材料力学性能的实验方法,值得进一步的完善和推广。
纳米材料论文 7
1.1纳米金刚石近年来,纳米尺度的金刚石作为新型碳纳米材料已� 纳米金刚石具有优异的机械、光学和电学等性能。在场发射、剂和生物医学等领域具有应用价值。1961年Decarli等[5]首先用爆炸法制得了超细金刚石粉。目前,纳米金刚石的制备方法主要包括爆炸法、激光蒸发法、CVD法、高能离子轰击法及放电等离子烧结法等。Zhang等[6]使用碳纳米管(comTs)做原料,在1500℃和80MPa的条件下,采用放电等离子烧结法制得了纳米金刚石。表征结果表明,制得的金刚石颗粒被一层无定形碳包裹着。Terranova等[7]采用热丝CVD法,使用平均粒径为40nm的碳颗粒做碳源,在分散有铁纳米颗粒的硅基底上制得了纳米金刚石。表征结果表明,制得的金刚石呈金字塔形,直径在20~100nm之间。
1.2碳纳米洋葱碳纳米洋葱是1992年Ugarte在显微镜中通过强电子束照射碳灰而发现的[9]。碳纳米洋葱的微观形貌为多层石墨构成的洋葱状颗粒,尺寸在纳米数量级。迄今为止,人们已经发展了多种制备碳纳米洋葱的方法,如电子束照射法、离子注入法、电弧放电法、碳烟灰的冲击波处理法及等离子体喷头上的碳沉积法等。电子束照射法是用具有一定能量的电子束照射含碳原料,使其汽化成碳原子和原子团,然后再重新结合、形成新的碳纳米材料的方法。一般情况下,电子束照射法制得的碳纳米洋葱呈球形,对称性好,形成的壳层在3~10层之间[8]。Sano等[9]采用水中电弧放电法,制得了碳纳米洋葱;表征结果表明,制得的碳纳米洋葱直径在4~36nm之间,石墨化程度不高,具有较大的表面积(984.3m2/g)。
1.3碳纳米笼碳纳米笼的结构和形貌多样,具有优异的理化性质。笼状结构的碳纳米颗粒之间存在空隙,很方便填充金属颗粒或其它分子,制备成具有特殊性质的纳米复合材料。由于范德华力的作用,碳纳米颗粒往往团聚严重,不易分散,使得其性质和应用研究受到限制。因此,制备分散性好、性质优异的碳纳米笼颗粒具有重要的意义。碳纳米笼的制备方法包括CVD法、超临界流体法、模板法、激光蒸发法及溶剂热法等。Li等[10]在超临界二氧化碳中,使用二甲苯为原料,在Co/Mo催化剂上沉积制得了碳纳米笼。表征结果表明,制得的碳纳米笼的表面积和孔体积的大小与反应温度和压力有关。在650~750℃之间制得的碳纳米笼直径在10~60nm之间;在650℃和10.34MPa的条件下,制得的碳纳米笼的孔体积为5.8cm3/g,表面积为1240m2/g。Wang等[11]使用乙醇和Fe(CO)5为原料,采用模板法,在600~900℃条件下,制得了碳纳米笼。研究结果表明,制得的碳纳米笼的直径在30~50nm之间,表面积在400~800m2/g之间;其可以分散在水中,几个月都不会团聚。
2应用
2.1催化剂载体碳元素以其特有的成键形式(sp、sp2和sp3)构成了形貌和结构多样的纳米颗粒材料,这类碳纳米材料独特的结构和奇异的物理化学性质赋予其广泛的用途。尤其是碳纳米笼颗粒,在众多的应用中作为催化剂载 Yun等[12]将铂催化剂负载在中空碳纳米球颗粒上,并且催化烯烃加氢反应。结果表明,中空碳纳米球颗粒负载催化剂的催化效果要高于活性炭;考察了碳纳米颗粒的结构对负载铂催化剂催化环己烷脱氢反应性能的影响。杜建平等[13]采用爆炸辅助化学气相沉积法制得了石墨化程度不高,类似球形的碳纳米颗粒。考察了其负载钼催化剂含量对环己烷脱氢反应的催化性能。结果表明,钼含量对环己烷脱氢催化反应有较大影响。钼含量15%时,催化性能最佳。
2.2生物医药与其它维数的纳米材料相比,零维纳米材料除了尺寸小之外,更重要的是其具有较大的比表面积,这使得其表面活性也有所增大。碳纳米颗粒直径越小,处于表面的原子比例就越大,反应活性越高,其对生物组织、细胞伤害就越大;直径越大,其在生物体内的免疫性越强,容易遭到免疫系统的攻击,从而被器官捕获和降解。周兆熊等[14]采用高压均质方法,使用全氟碳纳米颗粒荷载药物地塞米松磷酸钠或醋酸地塞米松。研究结果表明,荷载地塞米松磷酸钠和醋酸地塞米松的全氟碳纳米颗粒直径分别为(224±6)和(236±9)nm。荷载地塞米松磷酸钠和醋酸地塞米松的包封率分别为(66.4±1.0)%和(95.3±1.3)%,首日溶出比率分别为77.2%和23.6%。与不用全氟碳纳米颗粒荷载相比,全氟碳纳米颗粒荷载顺磁性造影剂钆喷酸葡胺可增加信号强16%。因此,全氟碳纳米颗粒荷载药物具有较好的缓释性,能增加磁共振造影剂的信号强度,从而提高其检测灵敏性。
2.3磁性材料安玉良等[15]采用控温还原炭化过程,利用纤维素和硝酸铁为原料,制得了包裹金属的碳纳米颗粒。表征结果表明,该碳纳米颗粒直径分布在20~90nm之间;具有对电磁波的电损耗和磁损耗效应;电损耗角正切值在1.1~1.2之间,磁损耗角正切值在0.45~0.70之间;电损耗角正切值随着频率的增加而增加;这些结果表明碳包覆铁纳米颗粒可 陈进等[16]采用电弧放电法制得了包裹铜粒子的碳纳米颗粒,考察了该碳纳米颗粒的导电性能。结果表明,该碳纳米颗粒具有核壳结构,内部为铜粒子核,外部为碳层且石墨化程度较高。该包裹铜粒子的碳纳米颗粒的导电性随着铜含量的增加而增加。当铜含量为80(wt)%时出现突跃。
2.4发光材料荧光碳纳米颗粒是一类较为理想的荧光标记和检测材料。因此,目前制备和研究荧光碳纳米颗粒成为一项受到广泛关注的课题。郭艳等[17]在恒定电压下,利用邻苯二甲酸氢钾、乙二胺四乙酸二钠、柠檬酸盐为电解液,采用电化学刻蚀石墨的方法,制得了带有荧光的碳纳米颗粒。与邻苯二甲酸氢钾和柠檬酸盐的电解液相比,同浓度的乙二胺四乙酸二钠为电解液制得的碳纳米颗粒的荧光最强。荧光强度随某种电解液浓度的减小而降低。研究表明,具有sp2结构的碳簇可能是碳纳米颗粒的发光中心。Bourlinos等[18]利用有机物碳化的方法制得了不具有晶体结构的,直径小于10nm的碳纳米颗粒,其可以发出多种可见光,得到了3%的荧光量子产率。
3结语与展望
目前,人们尽管在碳纳米颗粒材料制备研究方面取得了很大的成就,但距离真正走到应用领域还有一段距离,存在许多尚未解决的问题。在制备方面,要求提高现有制备水平以及发明新的制备技术,实现零维碳纳米材料的形貌可控、可调生长以及廉价的放量制备;在机理研究方面,碳纳米洋葱的生成机理取得了一定的进展,但其它零维碳材料的生成机理还有待于进一步的研究;在实际应用方面,需要进一步研究其应用价值,为该类材料的实际应用提供基础。随着人们研究的不断深入,其制备方法会得到改进和创新,具有新颖结构的碳纳米颗粒材料会不断地问世,进而应用于实践,潜移默化地改变我们的生活方式。
纳米材料论文 8
纳米材料制备技术的发展为解决这个问题提供了可能。随着制备技术的提高,纳米材料的晶粒尺寸、制造成本不断降低,而致密度、晶粒尺寸均匀度不断提高。例如,采用脉冲电沉积技术制备纳米Ni和Ni基合金薄板,通过各种参数的控制可使晶粒尺寸接近10nm,且沉积层具有很窄的晶粒尺寸分布范围。采用纳米材料进行微塑性成形,即使零件特征尺寸降低到微米尺度,零件内部依然包含大量的晶粒,可以排除各向异性的影响,从而抑制甚至消除尺度效应,解决微成形技术工程化应用的瓶颈问题。同时,纳米材料具有优异的力学性能,可以提高零件的质量。采用纳米材料进行塑性微成形,又带来了新的问题。随着晶粒尺寸的显著降低,纳米材料的强度、硬度成倍增加,塑性变形能力却明显变差[18],如果采用常规微成形工艺进行成形,为保证成形精度,对模具材料性能的要求明显增加,模具昂贵,摩擦磨损严重,寿命短。这会严重阻碍微塑性成形的广泛应用。研究经验表明,比较好的解决方式是采用超塑成形技术进行微成形,例如,Saotome等人采用超塑微成形技术制造了微齿轮[7],张凯锋等人采用该技术制造了微槽和微柱[13]。在超塑状态下,材料的变形抗力可以降低几十甚至上百倍[19—21],变形抗力和摩擦力都明显降低,从而显著降低微成形工艺对模具性能的苛刻要求,提高工艺稳定性和成形精度。采用超塑微成形技术的条件是,成形的材料必须是超塑性材料,幸运的是,纳米材料通常具有超塑性。Mcfadden等人[22]发现1420铝合金和Ni3Al材料的晶粒减小到纳米尺度后,材料在较低的温度就可以获得良好的超塑性。在超塑状态下,应力明显降低,从而降低对微小尺寸成形模具的性能要求,使得大批量生产微小零 随着微机电系统的发展,微型零件的需求量不断增加。微阵列是一种典型的微结构零件,在医疗、通讯、光学、化学等领域有广泛应用,如生物微针阵列、微生物芯片、光存储器、微化学反应芯片、微传感器等。微阵列的制造工艺包括光刻、离子蚀刻、同步X射线光刻塑模电铸等,但各种工艺间的生产成本、制造周期、产品质量及适用材料等方面有较大差别。如果采用超塑微成形技术制造微阵列,可以显著降低生产成本,提高生产效率和工艺稳定性。而且,采用超塑微成形技术还可以胀形出空心圆柱微阵列,在生物芯片、微化学反应芯片上会有重要应用。拟采用电沉积技术制备镍基纳米材料,系统研究其超塑性微成形机理,实现微阵列的批量制造,不仅能够解决微成形技术工程化应用的瓶颈问题,而且有助于深入理解微成形的科学理论。
2微成形研究现状
微成形的工艺可以分为体积微成形和薄板微成形两种。体积微成形的加工工艺主要有微压缩、微锻造、微铸造等;薄板微成形工艺主要有微拉深、微弯曲、***裁等。随着微成形技术的发展,工件尺寸越来越微小,而在加工过程中,会由于工件尺寸的变小,得到的实验结果与宏观理论恰恰相反,许多宏观上得到应用的理论,不能简单地缩放就应用在微成形上[23—24],对于微成形中的尺寸效应,需要得出全面的实验结论和微观可用的理论[25]。MichaelD.Uchic等人利用微压缩实验和模拟以位错为基础的变形过程进行了深入的研究[26],清楚地证明了尺寸的变化对于材料性能的影响,如晶粒的受力变形或产生应变梯度等,并也发现了小尺寸样品会产生应变突变,这对于理解位错自由组合消耗能量具有新的理解意义,并可以推动尺寸变形理论的产生。美国的Mara等人利用微压缩测试Cu/Nb纳米层状复合材料的机械力学性能,其微柱的压缩形变在相对于圆柱轴和压缩方向的45°方向被观察到,剪切带也是显而易见地被发现,且出现了比较大的塑性变形和相对于压缩轴的旋转[27]。H.Justinger等人利用8mm到1mm直径的冲头对不同的晶粒尺寸和箔材的厚度比的材料进行了微拉深试验,观察到冲头的力出现了明显的变化,同时改变粗糙度会显著影响杯型的几何形状[28]。建立了一个不同数量晶粒的单位体积的立方体基本模型,可以在下一个微成形过程中估计单一晶粒的可能取向,并解释了不同影响条件在微拉深中压缩和拉伸过程的流变应力变化的原因。日本的K.Manabe等人成功地利用微拉深工艺将20μm厚的铝箔制造成直径为500μm的微杯,并对杯子的几何形状、厚度应变分布以及表面粗糙度进行了测定[29]。研究表明,降低表面粗糙度更有益于微拉深的成形,表面粗糙度的增大不仅影响表面质量,还对成形极限产生影响,材料表面的光滑和拉深冲头的光滑,仍然是研究的重点方向。中国台湾学者Cho-PeiJiang和Chang-ChengChen,利用V型弯曲测试系统研究了板材的晶粒尺寸效应与弯曲板材厚度之间的关系,平均晶粒尺寸为25~370μm,板材厚度为100~1000μm,T/D为1~30,结果表明当平均晶粒尺寸恒定时,屈服强度和最大冲压力随着T/D的减小而降低,而随着T/D的增大,回弹量变小;当板材厚度一定时,平均晶粒尺寸变化的回弹现象类似于宏观尺寸的板材V型弯曲试验结果[30]。
3实验研究与讨论
3.1电沉积过程影响因素研究
3.1.1电流密度变化Ni-Co/GO复合材料电沉积过程中,不同电流密度(1.1,1.4,1.7,2.0,2.3,2.6A/dm2)的常温拉伸工程应力-应变曲线图如图1所示,总体的变化趋势是随着电流密度的增大,应变出现先增大后减小的状态,应力在1.1A/dm2时较小,为721MPa,在2.0A/dm2时达到最大,为1260MPa,其余的电流密度对应的应力大小较接近,在870~930MPa之间变化。不同电流密度的高温拉伸真实应力-应变曲线图如图2所示,图中右上角的曲线图为不同电流密度与延伸率的关系图。随着电流密度的增大,延伸率出现先增大后减小的情况,在电流密度为2.0A/dm2时产生的延伸率最大,达到535.8%。较高的电流密度可以得到较高的过电势,产生较大的成核速率,形成较多的晶核数,从而使得晶粒细化,因此随着电流密度的提高,复合材料的晶粒尺寸减小,能够有效地提高材料的常温和高温拉伸性能。当电流密度过高时,在一个脉冲周期的导通时间内会快速沉积,因为受到电镀液中扩散速率的影响,导致达到下一个脉冲周期时阴极表面的金属离子较少,对沉积速率及沉积得到的复合材料的性能产生较大的影响。
3.1.2pH值变化图3是镀液中不同pH值制备的复合材料常温拉伸的工程应力-应变曲线图,pH值依次为2,3,4,5.5。在工程应力-应变曲线图中可以看到,随着pH值的增加,应力、应变随之增加,在pH值为2时应力最小,为773MPa,当pH值为5.5时,应力达到1260MPa。当pH值较低时,虽然能够提高阴极电流密度的范围,增大了沉积速率,但会导致阴极析氢增加,从而导致内部和外部出现气孔,降低复合材料的力学性能。而过高的pH值会使镀层的脆性增加,也不利于力学性能的提高。
3.2单向拉伸试验研究
3.2.1应变速率变化研究图4为常温条件下应变速率变化的工程应力应变曲线图。当应变速率为1.68×10-2和1.68×10-3时,应力约为630MPa,应变约为0.41;当应变速率为1.68×10-4时,应力和应变都出现明显增加,应力可以达到1245MPa,应变约为0.69;而当应变速率为1.68×10-5时,应力出现非常明显的减小,降到937MPa,应变变化较小,约为0.67。出现这个现象主要是因为,复合材料中由于存在一些空隙和位错,当应变速率较大时,位错来不及滑移,其他晶粒也来不及补充到空隙位置,导致在位错或空隙位置出现断裂,从而得不到较好的力学性能;随着应变速率变小,晶粒可以填充空隙位置,位错也出现滑移等,有效地增加复合材料的应力应变等力学性能;而当应变速率继续减小,填充的量增加,滑移也比较明显,出现了应变增大但应力增加较小的现象。
3.2.2复合材料的厚度变化研究图5是复合材料不同厚度的常温拉伸工程应力应变曲线图。从图中可以看出,随着复合材料的厚度的增加,材料应变随之增大,这主要是因为复合材料中有效的被拉伸晶粒增多,在同样存在位错和空隙的情况下,会一直存在晶粒被拉应力的作用,不 当复合材料较薄时,应力会稍小一些,这主要是因为试样薄,位错和间隙存在的情况下,会出现某部位突然断裂,从而影响材料的应力,而当复合材料厚度增加后,
3.2.3试样宽度变化研究图6是不同宽度试样的常温拉伸工程应力应变曲线图。由图6可以看出,随着试样宽度的增加,应变也随之增加。当试样宽度增加时,复合材料中有效的被拉伸晶粒增多,在同样存在位错和空隙的情况下,会存在有效的拉应力作用在不同的晶粒上,导致应变增大;同时不同的试样宽度,拉应力基本相同,这是因为虽然试样的宽度不同,但是作用在每个晶粒上的力基本相同,拉应力变化不大。
3.3微半球体高温气体胀形图7是电沉积液中GO不同加入量时的高温气体胀形得到的微半球体,图7a—c的GO的添加量依次为0.01,0.03,0.05g/L。所得到的高温胀形件的高度依次为2.5,2.7,3.0mm,模具的孔半径为2.5mm,因此,H/r依次为1,1.08,1.2。这与高温拉伸的数据符合,都实现了高温超塑性。图8为胀形件厚度分布图。微半球自底端至顶端,厚度逐渐变薄。厚向应变不均匀,这主要是胀形件在不同位置应力状态差异造成的。胀形件的顶端为等轴应力状态,而靠近底端的部分,由于模具夹持作用,限制了板材沿圆周方向变形,因此这个位置的应力状态为平面应变状态。由于局部应力的差异导致不同位置具有不一样的应变速率,最后造成零件不同位置厚度的差别。在顶端区域由于有较大的应变速率,造成了显著的变薄效应。图9为胀形件胀破断口的SEM图。断口的晶粒粒径比较均匀,为1~2μm,在图9中发现存在GO,且存在GO的位置的晶粒较其他部分的晶粒稍小一些,说明GO的加入可以提高材料的热稳定性,抑制金属晶粒在高温下的长大,但加入量比较少,对材料晶粒长大的抑制作用较小。在胀破断口很难寻找到GO的存在,是因为在高温下,GO出现了挥发,且由于GO的厚度比较小,在产生挥发后很难在SEM下发现。
4结论
通过对最新进展进行分析研究,拟利用脉冲电沉积技术制备镍基纳米材料,系统研究其超塑性微成形机理,实现微阵列的批量制造,解决微成形技术工程化应用的瓶颈问题,同时有助于深入理解微成形的科学理论。通过实验研究发现,Ni-Co/GO复合材料电沉积过程中,当电流密度为2.0A/dm2时,制备得到的材料常温拉伸的应力达到最大值,为1260MPa,高温拉伸产生最大真实应变,延伸率达到535.8%;将电沉积液的pH值调节为5.5时,制备的复合材料的常温拉伸性能最好;进行了高温胀形实验,H/r比值最高可达到1.2,并可见微半球胀形件自底端至顶端的厚度逐渐变薄,厚度方向应变量达到68%。
纳米科学论文 9
论文摘要: 纳米技术作为一种新兴的科学技术,随着技术的发展,纳米技术已经被日趋应用于生活领域的各个方面。本文回顾了纳米技术和纳米材料的发展过程并对纳米材料在食品安全的应用进行了介绍和论述。
纳米技术是20世纪末兴起并迅速发展的一项高科技技术,随着研究的深入和科学的发展,纳米技术已经日趋成熟并广泛的应用于各种领域,近年来纳米技术在医药上的许多研究成果正逐步地应用于食品行业,在此技术上开发、生产了许多新型的食品以及具有更好的功效和特殊功能的保健食品,纳米材料在食品安全上也发挥着越来越重要的作用。
纳米是一种几何尺寸的度量单位,l纳米为百万分之一毫米,即十亿分之一米的长度。以纳米为基础的纳米技术在20世纪90年代初起得到迅速发展并先后兴起了一系列的像纳米材料学、纳米电子学、纳米化学、纳米生物学、纳米生物技术和纳米药物学,纳米技术就是一种多学科的交叉技术,最终实现利用纳米机构所具有的功能制造出有特殊功能的产品和材料。因此,利用纳米技术制造出来的材料就具有微观性和一些普通材料所不具有的功能。
随着纳米技术的发展,纳米食品生产也取得了很大的成就。目前,纳米食品产品超过300种,一些带有纳米级别添加剂的食品和维生素已经实现商业化。据预测纳米食品市场在2010年将达到204亿美元,因此纳米技术在食品上的研究有着很大的发展潜力。纳米技术在食品上的研究和应用主要包括纳米食品加工、纳米包装材料和纳米检测技术等方面。
所谓纳米食品是指在生产、加工或包装过程中采用了纳米技术手段或工具的食品。纳米食品不仅仅是指利用了纳米技术的食品,更大程度上指里哟个纳米技术对食品进行了改造从而改变食品性能的食品。尤其是利用纳米技术改造过结构的食品在营养方面会有一个很大的提高,在这方面应用最广泛主要有钙、硒等矿物质制剂、维生素制剂、添加营养素的钙奶与豆奶、纳米茶等。
然而纳米食品也存在一些问题,首先由于对于纳米食品的加工主要是球磨法这就使得在纳米食品生产的过程中容易产生粉料污染,同时现有的纳米技术也会产生成材料的功能性无法预测,纳米结构的稳定性不高等问题。纳米食品还存在另外问题那就关于纳米食品的安全检测并没有个一个同一的标准。目前,国际上尚未形成统一的针对纳米食品的生物安全性评价标准,大多数是短期评价方法,短期的模型很难对纳米食品的生物效应有彻底的认识。而部分纳米食品存存在一些有害成分,并且经过纳米化后,这些物质更加很容易进入细胞甚至细胞核内,因此副作用也就越大,而这些由于安全检测的标准不统一可能在检测的时候检测不出来,因此纳米食品的安全标准有待进一步统一。虽然纳米食品存在一系列的问题但是纳米技术在食品包装和保险技术中却得到了很好的应用。
首先,在已有的包装材料中加入一定的纳米微粒可以增加包装材料的抗菌性从而产生杀菌功能。目前一些冰箱的生产技术中已经应用了这种技术生产出了一些抗菌性的冰箱。
其次,由于纳米材料的特殊性质,加入一定的纳米微粒还可以改变现有的包装材料的性能,从而进一步保证食品的安全。目前,部分学者已经成功的将纳米技术应用玉改进玻璃和陶瓷容器的性能,增加了其韧性。同时,由于纳米微粒对紫外线有吸收能力,因此在塑料包装材料中加入一些纳米微粒还可以防止塑料包装的老化,增加使用寿命。从而为食品生产提供了性能更加优越的包装容器。
第三,由于纳米材料的力磁电热的性质,使得纳米材料有着优越的敏感性。一些学者已经在研究将纳米材料的敏感性应用到防伪包装上面并取得了一定的成就。新的防伪包装的产生,无疑能够进一步加强普通食品和纳米食品的安全。
第四,经过研究发现纳米技术和纳米材料的一些性能能够很好的解决食品的保鲜问题。
经过研究发现传统的食品保鲜包转,在起到保鲜功能的同时还能够产生乙烯,而乙烯又反过来加剧了食品的腐蚀,因此可以说传统的食品保鲜包转并没有能够很好的起到保鲜功能。在纳米技术在研究过程中,发现纳米ag粉具有对乙烯进行催化其氧化的作用。所以只要在现有的保鲜包转材料中加入一些纳米ag粉,就可以加速传统保鲜包转材料产生的乙烯的氧化从而抑制乙烯的产生,进而产生更好的保鲜效果。
综上所述纳米技术虽然还有一些不足和缺陷,但是经过多年的研究和发展纳米技术已经取得了很大的进步和发展,并且已经开始应用于生产和生活领域。纳米技术和纳米材料以其特殊的性能不紧能够生产出性质更加优越的纳米食品同时通过改善包装材料还可以进一步提高食品的安全。
[1]杨安树,陈红兵。纳米技术在食品加工中的应用[j].食品 科技,2007(9).
[2]张汝冰,刘宏英,李凤生。纳米材料在催化领域的应用及 研究进展[j].化工新型材料,1999(5).
[3]何碧烟,欧光南。食品添加剂对番茄红素稳定性的影响 [j].集美大学学报:自然科学版,2000(1).
[4]郭景坤,冯楚德。纳米陶瓷的最近进展[j].材料研究学 报,1995(5).
[5]黄占杰。无机抗菌剂的发展与应用[j].材料导报,1999 (2).
[6]张倩倩。纳米粒子增强蛋白质直接电子传递及其传感应用 [d].南京师范大学,2007 .
[7]张涛,江波,沐万孟。纳米技术及其在食品中的应用研究 进展[j].安徽农业科学。
[8]郭卫红,李盾,唐颂超,苏诚伟,徐种德。纳米材料及其 在聚合物改性中的应用[j].工程塑料应用,1998(4).
[9]袁飞,徐宝梁,黄文胜,唐英章。纳米技术在世界范围内 食品工业中的应用[j].食品科技。
纳米科学论文 10
【关键词】纳米技术 应用 材料
纳米技术属于高科技范畴,其已� 纳米技术主要包含纳米的物理、化学、材料、生物、电子等科学,它们彼此虽然是独立的科学,但是彼此又有着联系。当前,纳米的每个领域都取得了很好的研究成果,纳米技术不断创新、进步。
1 我国纳米技术发展现状
中国是世界上首先开始研究纳米技术的国家之一。在二十世纪八十年代的中期,我国政府就开始对纳米材料的研究以及设备加大了投入,当前我国的纳米技术基础研究在世界范围内都占据领先地位。1982年研究出的扫描隧道显微镜以及1986年研究出的原子力显微镜是纳米测量表征上的一个重要标杆,代表着纳米技术已经从原本的理论时期,进入到了实践研究时期。纳米技术是一个有着很强的综合性学科,研究的内涵包含了目前科技发展中的各个领域。纳米科学和纳米技术主要包含:纳米体系物理学、化学、材料学、生物学、电子学、加工学、力学等。这七个相对独立又彼此关联的学科与纳米材料、纳米器械、纳米尺度的检测和表征这三个研究方面。纳米材料的制备与研究是整个纳米科技的基础。在这之中,纳米物理学与纳米化学是纳米技术的理论基础,而纳米电子学是纳米技术最主要研究内容。
2 当前纳米技术的应用
2.1 食品方面的应用
纳米技术在食品科学的方面已经得到较为广泛的应用,对于纳米技术的研究能够对食品的品质、营养与安全性等层面进行改善,避免原材料的过度消耗,促进食品科学发展的科学性UI高效性。 近几年,城市中人们的生活节奏不断加快,导致亚健康人群的数量不断提升,因此,人们愈加青睐功能食品。经过研究表明,功能食品功能成分的稳定程度、存在方式和使用方式等对其食品的效果有着很大影响,尽管功能成分能够加入到食品当中, 日本首先把纳米技术应用于功能食品中,并且使用这一技术将功能食品中的β-聚糖改变成200nm以下的小颗粒,在卵磷脂稳定技术的支撑下,完成吸收。类胡萝卜素是一种和水不相溶的物质,经过纳米技术能够将其纳米化,能够明显的提升类胡萝卜素的水溶性,所以可以保证食品的稳定性和颜色的鲜艳,让它更容易被人消化和吸收。随后研究者将纳米胡萝卜素应用在柠檬水生产和黄油生产中,经济效益得到很大提高。
2.2 通信技术的应用
现代社会是网络信息社会,通信技术在我们的日常生活中有着非常重要的作用。纳米技术在通信技术中的应用给这一技术的发展起到了很大的影响。纳米材料也给光缆提供了新的发展空间。近年来,很多厂家已经着手对纳米光纤维涂料、纳米光纤油膏、纳米护套用聚乙烯(PE)及光纤护套管用纳米PBT等材料进行开发。使用纳米材料的光缆,能够让其具有很多的优点,例如提升光缆的对抗机械冲击能力、防水、防气味等,同时还可以让光缆的使用时间得到延伸,提升了网络的安全性。同时,在网络通信的加密上也可以运用纳米技术来制造量子点激光器。当前,很多金融部门以及政府部门都使用了这一技术,保证了信息在传输过程中的安全问题。
2.3 医学、药物中的应用
纳米技术在医学以及药物中的应用早就已经开始,目前人们已经能够把健康检测设备佩戴在身上,这样就能更好的了解自己的身体情况。假如能够进一步把这种技术缩小,这样使用纳米技术就能够将微型传感器放进人们的身体当中,了解更具体的信息,这样对于医生的治疗有着很大的便利。另外,纳米技术能够在检测人们身体的炎症、术后恢复等情况,纳米技术在医学与药物当中的应用有着很好的发展前景。
2.4 化学方面的应用
使用纳米金属颗粒粉体当做催化剂,能够让化学的反应更加快速,有效地让化工合成的效率得到提升。假如在金属材料中假如纳米成为,它会变得更加坚硬,比一般金属的强度增加十几倍,同时还能够像橡胶一样具有弹性。使用纳米材料制造来建造汽车、飞机等,不光能让重量减少,还能在很大程度上提高其性能。
3 纳米技术应用的发展趋势
3.1 大数据传感器
传感器的使用能够给我们带来以前没有的大量信息数据,所以要对其进行处理,对于改变交通拥堵以及安全事故十分有效,同时,能够把数据给警方使用,减少犯罪情况出现。纳米技术在这一方面能够创造出一种超密集的记忆体,来储存大量的数据,另外,能够推动快速的运算法则的发展,让这些数据更加安全、有效。
3.2 应对全球变暖
目前,电动汽车与太阳能发电已� 纳米技术在这一方面也具有很大的作用。在电动机器与太阳能发电中都能够使用纳米纹理以及纳米材料,把平面变成更大面积的三维立体表面,进而储存与形成更多的能量,提升设备的运用效率。
4 结论
综上所述,纳米技术在目前已经得到了广泛的应用,并且取得了很大的效果,并且有着很大的发展空间。希望通过笔者的分析,让更多人了解到纳米技术的重要作用,相信在广大学者的共同努力之下,能够不断提升纳米技术在的应用价值。
参考文献
[1]刘合,金旭,丁彬。纳米技术在石油勘探开发领域的应用[J].石油勘探与开发,2016(06):1014-1021.
[2]王丽江,陈松月,刘清君,王平。纳米技术在生物传感器及检测中的应用[J].传感技术学报,2006(03):581-587.
[3]张文林,席万鹏,赵希娟,于杰,焦必宁,周志钦。纳米技术在果蔬产品中的应用及其安全风险[J].园艺学报,2013(10):2067-2078.
[4]曲秋莲,张英鸽。纳米技术和材料在医学上应用的现状与展望[J].东南大学学报(医学版),2011(01):157-163.
纳米科学论文 11
关键词:微纳制造;教学方法;虚拟科研;虚拟实验
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2015)44-0090-02
一、微纳米制造技术课程的背景及特点
微纳米科学与技术已成为一种战略性的、占主导地位的技术,被中国机械工程协 微纳米制造技术通过在微纳米尺度范围内对物质的集成与控制,创造并使用新的材料和装置,以实现不同功能的机电或机光电一体化智能系统,涉及电子、机械、光学、物理、化学、材料、制造、生物、信息等多种学科,是制造技术的融合交叉新领域。教育部已经将微机电工程列为机械工程一级学科的五个二级学科之一,相当多的高校陆续开设了相关课程。《微纳米制造技术及理论》作为微机电工程研究的入门课,提高其课堂教学的质量,逐步开展实验教学是非常有必要的。我们在精品化教学内容的基础上,在教学实践中探索了微纳米制造技术及理论课程的虚拟实验与模拟科研教学法,并取得了较好的课堂效果。
二、精品化课程内容
《微纳米制造技术及理论》作为一门导论类课程,内容涵盖了微机械加工、半导体加工、纳米制造和生物制造等种类繁多的微纳米加工方法,且各制造方法的相关性不强,给教学带来了极大的挑战。结合本校特点,我们编排的课程内容从分子操作到纳米加工、从生物制造到仿生制造、从微细机械加工到微细特种加工、从集成电路工艺(IC工艺)到MEMS(微电子机械系统)构成了结构对称的多学科制造技术。在体系编排上从纳尺度制造到微尺度制造、从低维低复杂度制造到高维高复杂度制造、从探索前沿到实用产业构成了循序渐进的知识体系。总体内容涵盖了机械、材料、电子等工程学科知识及物理、化学、生物等基础学科的理论,培养了学科交叉创新的意识。
教学内容组织首先强调“由理及表”,即从原理到应用、从理论到实际,同时强调内容来源的“鲜活性”,即紧密跟踪国际前沿最新科学研究成果,紧跟国家战略需求,最终使学生达到微纳米制造技术基础理论学习和工程应用等综合能力的培养。
三、探索虚拟科研情景教学法
(一)虚拟科研情景教学
技术发展有不以人的意志为转移的内在驱动力,在讲解某项微纳制造技术时,可以通过讲解该技术发明前的客观需求、相关技术和理论发展水平来引领学生的思维,使学生站在研究者的角度去思考如何创造一种“新”的微纳加工方法来解决面临的“历史”问题,从而引出具有内在逻辑必然性的该项微细加工技术。例如在讲解深硅等离子刻蚀技术时,我们首先讲解加速度传感器的历史现状,为提高其灵敏度,亟需高深宽比微纳结构的加工方法,而当时的硅化学刻蚀方法,无法实现高深宽比的微纳加工;等离子加工技术和理论已在集成电路加工中获得应用,如何开展基于等离子刻蚀技术的高深宽比硅加� 学生从科学探索的角度和教师一起从化学原理的角度分析基于“SF6+O2”的加工方法,逐渐引出在通用的BOSCH深硅加工工艺。这种基于虚拟科研情景再现的授课方式,不但提高了学生的注意力,还使学生从一个研究者的角度去思考问题,轻松掌握了该微纳米制造技术的用途、原理和特点。
(二)多媒体辅助虚拟实验教学
微纳米制造技术及理论课程知识涵盖面广、信息量大,而教学时间仅有32个学时,如何提高课堂效率成为一个重要问题。除了突出重点,在微纳尺度效应、微机械切削原理、体微硅制造、表面微加工等方面深入讲解外,在装备原理、工艺过程等方面通过多媒体等手段增加形象认识是非常有必要的。例如,光刻过程包含清洗、烘干、涂胶、前烘、对准、曝光、后烘、显影、显影检查、显影硬烘等多步工艺,我们在研究生课的讲解中采用了传统的讲授方法,由于多数学生对相关工艺过程不了解,既不容易抓住重点,也不容易提起兴趣。而在留学生课的教学中,在给学生讲授了光刻的基本原理的基础上,我们采用了播放光刻过程实景录像,穿插关键点讲解的教学方式,这样既提高了课堂效率,又吸引了学生的兴趣,加深了理解的形象化程度。
(三)虚拟科研的考核方式
在《微纳米制造技术及理论》的课程考核中,过去我们多依赖闭卷考试的方式,闭卷考试能考察学生对基础理论的掌握,督促学生在课后进行重点内容的复习和掌握。而在本轮的改革尝试中,我们增加了要求学生写一个课程总结的考核方式。这份课程总结不是对本课程主要内容的综述,而是针对某一项微纳米制造技术的现状综述,并给出一个利用该种加工工艺制作某种新型微结构或微器件的创新性提案。虽然多数学生的提案可行性不大,但至少达到了使学生站在一个科研工作者的角度去了解并利用微纳米制造技术的教学目的。
(四)微纳米制造课的实验教学
通过虚拟科研实验的教学方式,虽然能在一定程度上增加学生的直观认识,但给人最深刻的认识一般还是从实践中获得的。《微纳米制造技术及理论》作为一门实践性很强的课,实验教学是一项重要的教学环节。但本校尚未设立微机电系统工程专业,也没有相关教学实验中心,因此开展实验教学难度很大。为此,本教学团队克服困难,采取特定时间开放科研环境,与教学并用的方案,安排了三堂精彩的实验课教学。首先为使学生对微纳米制造以直观的认识,我们在实验室展示了基于仿生制造技术的功能表面、基于生物制造技术的功能颗粒、基于微机电系统技术的微传感器等成果,并给学生展示了相关的实验环境、加工设备及原理。为进一步加深学生的认识,我们分组进行了光刻工艺试验和溅射工艺试验,使学生体验并认识到加工过程中的难点和技巧,给学生留下了深刻的印象,加深了对课堂知识的认识。此外,通过与半导体加工条件较好的科研单位合作,以创造更优良的教学参观环境,相信能使学生获得更深刻的认识,促进微纳米制造工程实践能力的培养。
四、结语
微纳米制造技术发展迅速,制造学科高年级本科生或研究生具有掌握微纳米制造的基础知识,了解其最新的发展动态及技术现状的强烈需求。要在有限的课堂时间内把丰富的微纳制造相关内容讲授给知识背景和研究方向各不相同的学生具有极大的挑战性。我们从精品化教学内容以增强内容间的逻辑性、开展虚拟科研实验教学实现教学与科研的融合、改善实验条件加深学生感性认识等三个方面做了初步探索,并取得了一定成效,力争为微纳米制造领域的教学改革和学生培养做出贡献。
参考文献:
[1]中国机械工程学会。中国机械工程技术路线图[M].北京:中国科学技术出版社,2011.
[2]张海霞,赵小林,译。微机电系统设计与加工[M].机械工业出版社,2010.
[3]唐道武。微机电系统课程教学改革的思考[J].产业与科技论坛,2012,(11).
纳米材料论文 12
非对称纳米粒子的特殊非均质结构决定了其独特的理化性质,由此也为这种新型纳米材料的广泛应用奠定了基础,尤其在生物纳米技术领域。这种非对称纳米材料的独特性质主要包括表面双亲性、催化特性和生物相容性。下面将从这几个方面进行综述。
1.1表面两亲性在水/油混合体系中,具有表面两亲性质的固体纳米粒子可以在两相表面形成一层结构稳定的单分子层以阻止乳化液滴的聚并。由于非对称粒子两面不同的结构特点,因而对其表面活性的研究也曾一度引起广泛的研究热潮。Binks等对比研究了均质粒子和非对称粒子在油/水界面上的吸附性能。结果发现,非对称粒子可使Pickering乳液的稳定性大大增高。相对于仅产生均一表面湿润性的粒子,非对称粒子是具有两面不同湿润性表面的新型粒子,并且也由此具备了典型的Pickering效应和传统表面活性剂的两亲性质[4]。为进一步探究非对称粒子的两亲性,Glaser等运用哑铃状Au-Fe3O4纳米粒子在水相中乳化正己烷,并深入阐明了非对称粒子的两亲性。实验通过配位体交换在Au的部分修饰正十二硫醇(DDT)和十八硫醇(ODT)以增加Au部分的疏水性,从而在整体上提高了粒子的两亲性质。由于具有两亲性的非对称粒子在界面上可通过自组装以降低界面张力,从而增强乳浊液的稳定性,因此在乳液体系中碳氢化合物配体修饰的Au部分因其非极性而朝向正己烷相,同时,极性分子Fe3O4则浸入水相中。实验证明,相对于相同粒径和化学组成的均质粒子,非对称粒子具有更好的界面活性,并且其界面活性随着粒子两亲性的增强而增强。最近一项研究表明,不同类型固体纳米粒子在稳定癸烷和水乳化液时,非对称纳米粒子表现了相对于均质粒子更强的稳定性,因此可以更有效地抑制分散相的聚并。通过观察纳米粒子对两相液滴的乳化作用,Fan等[6]通过动力学模型从机制的角度详细比较了非对称纳米粒子和均质纳米粒子在稳定Pickering乳液时的区别。结果表明,两相界面上粒子的密度是稳定Pickering乳液最关键的因素。当密度足够大时,三相接触角可 当以相同的密度和接触角时,非对称纳米粒子在稳定乳化液时表现出较均质纳米粒子更加有效。在生物质精炼过程中,初产品的不相溶性和热不稳定性大大增加了纯化过程的复杂度,从而导致得率降低,因此,一种既能够在两相界面上稳定存在又同时具备催化性的材料应运而生。非对称纳米材料因其良好的两亲性可以有效稳定水/油乳液,当在其表面修饰催化剂时,这种材料便可以在两相界面上进行催化反应,从而有效完成非均相的有机合成反应,提高生物质精炼的效率[7]。近年的研究表明,非对称纳米材料凭借优越的表面活性,其多种应用潜能已被开发,如表面稳定剂、增容剂以及防水纺织品等。在工业生产中,为了在反应性共混体系中增容两种组分,通常需要使用嵌段共聚物作为增容剂,但由于大多数的嵌段共聚物不能吸附在界面上,并且在高剪切挤压过程中容易丢失,因此很大程度上增加了共混聚合物的成本。然而,非对称粒子因其表面双亲性质有效避免了嵌段共聚物的缺点,因此可以代替嵌段共聚物成为一种新型增容剂。经相关实验证明,非对称粒子在聚合物共混体系中具有更高的增容效率[8]。Synytska等[9]还巧妙地利用了非对称粒子的双亲性将其化学性修饰到纤维表面,从而开发出新型的防水纺织品。
1.2催化特性近些年,科学家对于催化剂分子与纳米粒子的结合研究已获得一些进展,如纳米驱动器、感应器、纳米泵以及自动装置的问世。相应复合材料的性质及应用也受到广泛关注。研究人员发现,在氧化物载体上修饰金属所形成的复合纳米材料,相较于未修饰之前的单一组分纳米材料具有更强的催化活性,并且这种复合粒子的催化性能还会因发生在金属与氧化物接触面上的协同效应而增强。Wang等[10]用贵金属和金属氧化物制备出哑铃状的非对称纳米材料,并研究了该合成材料在氧化CO中的催化效率。结果表明,制备的Au-Fe3O4和Pt-Fe3O4非对称粒子在氧化CO时表现了较单纯的贵金属材料(Au或Pt)更强的催化活性。类似地,在催化H2O2还原反应时,Au-Fe3O4纳米粒子也表现出很好的协同效应,从而获得增强的催化性能[11]。自1972年,由日本东京大学FujishimaA和HondaK两位教授[45]首次报告发现TiO2单晶电极可以光催化分解水产生氢气,从而开辟了光解制氢的研究道路。随着材料学的发展,纳米化光催化剂得以实现。由此诞生的纳米TiO2粒子凭借其较高的光催化� 但因其能带限制,只有吸收波长小于387.5nm的紫外光才能产生光生电子和空穴以诱发光催化反应,这在很大程度上限制了TiO2光催化技术的实际应用。为拓展TiO2光能利用效率,充分利用太阳光中的可见光,国内外学者围绕TiO2改性做了大量研究[12]。由于贵金属粒子在入射光电场作用下,其自由电子可产生集体振荡,当入射光子频率与贵金属纳米粒子传导电子的整体振动频率相匹配时,纳米粒子会对光子能量产生很强的吸收作用,就会发生局域表面等离子体共振(localizedsurfaceplasmonresonance,LSPR)效应。在Seh等[13]的研究中,制备的非对称金-TiO2纳米粒子可借助金的LSPR效应有效促进TiO2光解制氢。根据实验对比核壳结构的金-TiO2纳米粒子可知,非对称的金-TiO2纳米粒子作为优良的光催化剂在等离子体增强的可见光光解制氢的应用中表现了较好的催化效率。类似地,利用TiO2的光催化性质,非对称结构的金-TiO2纳米粒子还被应用在光催化甲醇氧化生产甲醛的反应中[14]。纳米粒子可以通过将环境中的自由化学能转化成机械能从而使其获得自身动力。作为贵金属之一的铂是一种良好的金属催化剂。它可以催化过氧化氢生成水和氧气,因此制得的铂-金非对称金属纳米棒在过氧化氢水溶液中通过催化反应可获得自发动力。实验显示,在过氧化氢溶液中该纳米棒可以30μm/s的速度进行轴向运动。在类似的实验中,Ozin和他的同事[16]也观察到镍-金纳米棒的旋转运动。在对非对称纳米粒子的催化动力机制的研究中,Wang等[17]制备的修饰有过氧化氢酶的金-吡咯非对称纳米棒在H2O2溶液中也呈现出一定的运动现象。Howse等在前人的研究基础上对非对称粒子催化动力机制进行了深入探索,他们在聚苯乙烯微球的半面上包覆了铂金属材料,并利用铂对过氧化氢的催化还原作用而使其获得自发动力。实验发现,在短时间内,非对称形态的粒子呈现出定向运动,且运动速率随着环境中底物分子浓度的升高而增大。由此构建的趋化系统也为非对称纳米粒子的实际应用提供了新的方向。之后,在Sen和Chaturvedi等的进一步研究中发现,具有催化性的非对称粒子在紫外线照射和H2O2的环境中还表现出一定的趋光性[19,20]。基于非对称材料独特的结构特点和多种性质的相辅相成,这种新型复合粒子为进一步的材料创新以及应用开发都提供了良好的基础和平台。从近年的研究热度和方向可见,具有催化性的非对称纳米粒子,在化学和生物领域都具有很大的应用潜力。
1.3生物相容性基于亚细胞的尺寸大小,纳米粒子被广泛应用于生物领域,如细胞标记和成像。当纳米材料被应用于生物体内时,该材料或结合在细胞表面,或经吞噬作用和巨胞饮作用内化到细胞内。研究表明,在纳米粒子与细胞或胞外环境之间通常会产生一些生物效应,这些生物效应的发生主要由纳米粒子的物理化学性质(尺寸、形状、表面性质)所决定,并由此产生生物相容性或其他生物效应。为了使纳米材料在生物体内更好地发挥其预期作用,研究者们认为,良好的生物相容性是一个至关重要的前提条件。经大量研究发现,SiO2、羟磷灰石(HAP)[23]、聚乙烯醇(PVA)、聚乙二醇(PEG)以合适的物理化学性质修饰于材料表面时,可使材料引入官能基团从而获得较高的生物相容性。因此,无论是对称或非对称纳米材料,其表面如果修饰这些试剂,理论上都是可以获得较好的生物相容性。在了解到聚丙烯酸和聚丙烯酰胺-丙烯酸在人体试验中均表现了良好生物相容性后,Yoshida等创新性地将这两种试剂利用化学反应制成具有两相性的非对称纳米胶体,并在两部分材料中分别修饰了生物素和异硫氰酸荧光素,进而可将链霉亲和素特异性结合在材料表面。经进一步的细胞实验表明,这种非对称纳米胶体在较宽的剂量范围内仍保持很好的生物相容性。在最近一项研究中,非对称纳米材料Au@MnO因同时具备磁性和光学性的双功能而成为高通量检测的研究重点。但是MnO因自身带有一定的细胞毒性阻碍了其在生物医学领域的应用。为了解决这一问题,科学家们将SiO2包覆在暴露的MnO部分,通过改变非对称材料的表面修饰,从而使这一非对称纳米材料(Au@MnO@SiO2)在之后的细胞活力实验中表现了较好的生物相容性,并降低了细胞毒性,从而扩展了其应用范围。
2基于非对称纳米材料的生物探针构建及其应用研究
作为多功能纳米材料,非对称纳米粒子的大多数应用都得益于它可调控的非对称结构和独特的表面特性。随着非对称纳米粒子制备方法的多样化,其在各领域的应用潜能被不断开发,尤其在生物医学领域。由于在非对纳米粒子的两部分独立表面上可以分别修饰配体或蛋白质等生物大分子,由此构建的多功能生物探针已被广泛应用在医学研究和临床诊断上,如生物传感器和靶向药物运载系统等。
2.1生物传感由于非对称纳米粒子具有独特的理化性质,因此可经多种修饰而获得良好的生物传感性能。具有精确生物传感能力的纳米探针对医学领域的应用具有重大意义。Wu等[28]制备的非对称金-聚苯乙烯纳米粒子就同时具备了细胞特异性靶标和生物传感功能。由于修饰在聚苯乙烯半面上的抗HER-2抗体可以与BT474人乳腺癌细胞表面的HER-2受体特异性结合来靶标细胞,同时又通过对金半面的表面增强拉曼散射图谱来传感目标细胞,从而提高了癌细胞检测的灵敏度。Villalonga等[29]运用非对称纳米粒子成功设计出一种尿素传感系统。在这种非对称纳米粒子的金表面修饰上脲酶,同时在介孔硅材料表面包覆上一种pH感应门控(pH-responsivegate)物质,当这一生物探针在环境中遇到尿素时,金部分携带的脲酶就会专一性分解尿素,导致环境中pH值升高,进而打开pH感应门控以实现传感效应。在哺乳动物中枢神经系统中,多巴胺是一个非常重要的神经递质,因而对这种神经递质的定量检测也引起了研究人员浓厚的兴趣。目前,利用多巴胺在电极上的电化学催化氧化作用进行的检测最为普遍。但由于电极表面会因氧化产生污物以及来自抗坏血酸联合氧化形成的干扰都对多巴胺的检测效率构成了一定的负面影响。最近的一项研究显示,将非对称金纳米团簇修饰在玻璃碳电极上制得的多巴胺电化学传感器在多项实验中均表现了较高的催化活性从而有效降低了多巴胺检测限。在多巴胺的电化学反应中,非对称纳米团簇作为一种氧化还原介质可有效促进团簇与玻璃碳电极间的电子转移,以增强多巴胺的电化学催化氧化,从而提高了多巴胺的检测灵敏度和效率[30]。类似的研究发现,为构建一个生物识别-效应系统,在非对称金-介孔硅纳米粒子的两部分分别修饰上链霉亲和素和辣根过氧化物酶(HRP),当该探针特异性地结合在修饰了生物素的金电极上时,由于固定化的HRP在电化学反应中可转化环境中H2O2从而产生电分析信号,之后由循环伏安曲线来表征这一传感效应。多模态成像是生物医学诊疗中的一项重要的传感手段。通过标记生物荧光物质或量子点的成像探针在细胞靶标和分子检测中已广泛应用。得益于局部表面等离子体共振现象,贵金属纳米粒子以及包含贵金属的复合纳米颗粒具有优良的光学性质,因而可用于光学传感[32]。Sotiriou等将Fe3O4/Ag非对称粒子标记特异性抗体后,细胞实验中暗场荧光测试结果表明,摄取Fe3O4/Ag粒子的Raji和Hela细胞显示出较强的荧光信号,与未经该材料处理的Raji和Hela细胞形成强烈的反差,说明Fe3O4/Ag非对称粒子能够很好地应用于细胞标记和生物成像中。根据量子点的荧光性质,Selvan等制备了表面包覆SiO2的Fe3O4/CdSe非对称二聚体,之后将聚乙二醇(PEG)修饰在复合粒子表面,PEG的亲油基团暴露在表面以便于细胞膜标记。将表面改性后的复合粒子用于活体细胞膜的特定标记,激光共聚焦扫描显微镜结果显示,经磁性粒子标记后小鼠乳腺癌细胞显示出较好的荧光特性,从而证实了Fe3O4/CdSe粒子在体内成像上的应用。
2.2靶向运载非对称复合纳米粒子因其两面性在药物靶向输送方面具有潜在应用价值,有的已步入临床研究阶段,� 众所周知,含铂化合物是一类常用的抗癌药物。因其对肿瘤细胞识别力差而引起较大的毒副作用,多项研究已致力于将其载带于具有靶向功能的纳米材料上。在一项研究中,磁性介孔磷酸钙纳米材料表面可经化学反应修饰上—COOH,之后,研究者将含铂化合物、—NH2化的靶向分子叶酸和荧光标记物罗丹明B分别经化学交联而结合在材料表面。经细胞实验表明,该靶向运载系统在Hela细胞中表现了较高的特异性和杀伤力,从而也验证了传统的对称纳米材料在靶向运载功能上的应用可行性[36]。而以两面性和多功能为主要特点的非对称纳米材料,在合适的设计下亦可作为靶向运载的工具。Sun等[37]利用Au-Fe3O4非对称复合结构的各向异性表面特性及多功能单元,设计了具有靶向输送含铂药物的新型多功能载体。以共价键的形式将含铂化合物的药物和具有靶向作用的HER-2特异性抗体分别连接到复合结构中的金颗粒和Fe3O4颗粒表面,通过对化学连接方式的设计使含铂化合物在低pH值条件下释放,从而可以一定程度上实现对癌细胞的选择性杀伤。相较于单一性即传统的对称纳米材料,非对称的Au-Fe3O4材料本身就兼具了示踪信息:磁性和光学性,因而无需标记其他示踪物,从而简化了修饰过程。此外其非对称表面的生物修饰相对独立,更有利于实现药物分子的可控设计和监控。类似地,在利用非对称金-聚苯乙烯纳米粒子特异性靶标并传感人乳腺癌细胞时,Wu等也提到可以在聚苯乙烯表面通过疏水性吸附将药物固定在功能载体上,以达到高效治疗的目的。最近,Wang等[38]基于具有典型非对称结构的聚苯乙烯-四氧化三铁-氧化硅三元复合体系,在聚合物和氧化硅组分表面分别修饰上不同的化学基团,并且借由功能基团的选择性分别连接上靶向分子叶酸和化疗药物DOX,从而制备了具有靶向和pH值敏感的控释药物载体(图2)。细胞实验结果证明该载体具有良好的肿瘤细胞靶向效果。Sahoo等运用传统的对称纳米材料,也设计出一种以叶酸为靶向载带药物DOX的运载系统。其设计主要是以多功能的MnFe2O4纳米粒子作为载体,通过SiO2包覆形成核壳复合体,后经表面修饰和造孔剂作用使得这一载体表面具备官能基团和多孔性,叶酸分子可通过表面官能基团连接于载体上,而DOX则可载入表面多孔中。这一精良设计使得该运载系统获得了较好的靶向运载效力。与这一DOX运载系统相比,虽然非对称纳米材料在靶向运载效力或是设计程序的复杂程度上并无明显优势,但是Wang等的非对称复合材料可因连接DOX的pH感应门控而实现DOX的可控释放。由此可见,非对称纳米粒子可以有效实现靶向基团和载带药物分步地附着于粒子表面,从而使得这种材料的表面生物修饰具有更好的独立性和可控性。这种通过复合材料的两个独立表面及其表面基团来设计多功能纳米诊疗系统的新思路,可以扩展到其他不同组分的非对称复合材料体系,并可能用于其他生物医学领域。作为靶向运载系统,非对称纳米材料还可以应用在基因治疗(genetherapy)方面。基因治疗是指将外源正常基因导入靶细胞,以纠正或补偿缺陷基因,达到治疗目的。Salem等在非对称Au-Ni纳米棒表面分别化学性修饰上靶向配体和DNA质粒从而设计出一个靶向基因运载系统。修饰在Au表面的转铁蛋白作为靶向物质可以有效捕捉到细胞,同时由于结合在Ni部分的质粒DNA具有编码荧光素蛋白酶和绿色荧光蛋白的基因,因此经细胞转染实验后,激光共聚焦扫描显微镜的结果证明了靶向基因运载系统的有效性,
2.3基因疫苗基因疫苗指的是DNA疫苗,即将编码外源性抗原的基因插入到含真核表达系统的质粒上,然后将质粒直接导入人或动物体内,让其在宿主细胞中表达抗原蛋白,诱导机体产生免疫应答。一项研究表明,修饰有外源DNA的非对称无机纳米棒可作为一种基因瞬时表达的载体,当其导入细胞内以后,外源DNA和宿主细胞染色体DNA不发生整合就可直接表达为抗原蛋白。与其他无机非病毒载体不同的是,这些纳米棒可以在空间特定区域上修饰不同的功能基团,以提供精确控制的抗原[40]。因此,为进一步开发这种特殊材料的应用潜能,相关研究应首先证实这一新型疫苗载体可以在体内发生强烈的免疫反应。Salem等运用基因枪法将携带有模式抗原的非对称Au-Ni纳米棒导入小鼠体内,结果观察到很强的抗体反应和CD8+T细胞反应。由于免疫刺激佐剂效应(immunostimulatoryadjuvanteffect),修饰在纳米棒Ni部分的pcDNA3可以增强结合在Au部分上抗原的免疫原性,从而有效增强了免疫应答的强度[41]。这项研究也为非对称纳米材料在接种疫苗领域的进一步应用提供了研究基础。
2.4杀菌剂在临床上,细菌感染是一项可引起较高死亡率并增加医疗成本的严重问题。然而随着细菌抗药性的发现和不断增强,探索新型杀菌剂的开发和应用成为研究热点。Lee等[42]的研究表明,银纳米粒子对多种革兰氏阳性菌和革兰氏阴性菌均表现了较强的杀菌效果,� 然而,银纳米粒子较强的团聚效应、易氧化性和较高表面能等缺陷也限制了这种抗菌剂的实际应用。之后,围绕增强银纳米杀菌剂的稳定性和杀菌力的研究进一步展开。其中,利用非对称纳米材料和银纳米粒子复合形成的抗菌剂表现了较好的杀菌效果。由Zhang等制备的Fe3O4-SiO2非对称纳米棒因其优越的生物相� Fe3O4-SiO2非对称纳米棒因结合了两个部分材料的性质而同时具备较强的磁性和温和的表面修饰性能,因此由其与银纳米粒子结合形成的复合材料 通过抑菌实验发现,Ag@Fe3O4-SiO2对大肠杆菌和枯草芽孢杆菌的最低抑菌浓度分别为0.90μg/mL和1.35μg/mL,明显低于单一的银纳米粒子。之后的实验进一步证实,修饰了银纳米粒子的非对称纳米棒作为一种新型杀菌剂,具有相对较好的分散性和稳定性,更重要的是具备了更加有效且持久的杀菌力。
3展望
非对称纳米材料由于特殊的形态、结构和优越的理化性质成为现今纳米材料的研究热点。本文对非对称纳米材料的表面活性、催化特性以及生物相容性方面的研究作了总结,重点强调了这种新型纳米材料在生物医学方面的应用,如生物传感、药物靶向运载、基因疫苗和杀菌剂。非对称纳米材料因其结合了双组分的结构特征和性质特点从而在多种应用中具备协同效应,同时,相对于单一组分的纳米材料,非对称材料在表面活性、催化性、生物传感等方面均有增强效应。尽管非对称纳米材料的研究已有较快的发展,但是仍然有一些难题尚未解决,其中最大的挑战就是针对特定的应用去设计非对称纳米粒子的组成、尺寸和表面修饰,并采用简便、稳定的方法实现批量的制备,尤其在大批量合成和提高产物的均匀性方面还需进一步的研究。随着纳米技术的发展,开发具有更加复杂形貌和结构的非对称纳米粒子,并将其应用到更多的领域将是未来的研究热点。目前,非对称纳米材料在食品安全领域的应用还很少有报道。Suci等[44]在相关研究中运用非对称粒子设计出一个能够靶向检测金黄色葡萄球菌的系统,初步探索了这种新型材料在食品安全领域的应用可行性。鉴于该材料在生物医学领域的应用基础,我们相信这种多功能纳米材料在食品领域的应用将是一个亟待探索与创新的研究课题。
纳米科学论文 13
关键词:纳米艺术,DNA艺术,碳纳米管与富勒烯艺术,计算机辅助
中图分类号:N04;TB3 文献标识码: A
文章编号:1673-8578(2011)05-0052-04
纳米科技是研究纳米尺度(1纳米=10-9米)内,原子、分子和其他类型物质的运动和变化的科学与技术。1990年首届国际纳米科技会议在美国巴尔的摩举办,标志着纳米科技的诞生。经过二十余年飞速的发展,纳米科技已派生了纳米材料学、纳米物理学、纳米化学、纳米电子学、纳米计量学、纳米机械学、纳米生物学、纳米力学等主流的学科分支。值得注意的是,近几年来,一门与纳米科技紧密结合的学科――纳米艺术学,也悄然兴起,并逐渐吸引了艺术家与科学家的眼球。
目前,媒体上关于纳米艺术的话题不断增多。在谷歌(Google)上以“纳米艺术”或“Nanoart”为关键词进行搜寻,会得到70余万条海量的信息;国际纳米艺术作品展也由一个自称为“Nanoart21”的组织主办,连续举行了6届。作为一位纳米艺术的积极倡导者,笔者早在2006年创办了国内第一个纳米艺术网;先后在《艺术科技》《科技奖励》《百科知识》等刊物上发表纳米艺术的文章;2010年成功参与组织/举办了首届国际纳米艺术展暨首届国际纳米艺术论坛;出版了国内外第一本关于纳米艺术理论方面的专著。令人欣慰的是,现在,纳米艺术已经被越来越多的科学家、艺术家乃至老百姓所接受;尽管如此,笔者也深深地感觉到,纳米艺术这门新学科的发展任重道远,许多相关的概念、术语都比较含糊,需尽快确定下来。为此,本文对近年来出现的一些纳米艺术新概念和新术语进行探讨。
一什么是纳米艺术
纳米艺术是如此“年轻”,以至于尚未形成公认的定义。2010年11月13日,首届国际纳米艺术科普展暨首届国际纳米艺术论坛开幕。当日,该次艺术展的发起人之一时东陆教授在谈及纳米艺术的定义时表示:“纳米艺术就是利用艺术的想象而对纳米科学的结果进行再创造和图解……因为纳米科学涉及化学、物理、生命、医学、工程等许多学科,只要是在纳米尺度上在这些领域里利用科学元素进行的艺术创作都可以定义为纳米艺术……”在随后的国际纳米艺术论坛中,纳米领域科学家与艺术家广泛交流了意见,时教授有关纳米艺术的定义基本上得到了认同。
在首届国际纳米艺术展开幕之际,《纳米艺术概论》一书也现场正式发售。在该著作中,作者描述了纳米艺术作品的三个特征,即1)纳米艺术作品所反映的事物尺度很小,作品细节为纳米量级;2)纳米艺术作品的制作或表象过程中应用到了纳米技术;3)纳米艺术作品要给人以“美”的感受。在本次纳米艺术展上的百余件作品中,上述特征得到了彰显,说明了书中纳米艺术内涵阐述的正确性。
二光学显微镜成像不属于纳米艺术范畴
为了洞察微观世界,到目前为止,人类已经先后发明了光学显微镜、电子显微镜和扫描探针显微镜等显微工具。其中,受到可见光光源波长与分辨率的限制,光学显微镜只能观察到微米尺度(1微米等于1000纳米)以上的微观结构,也就是说,用光学显微镜是根本无法观察到纳米绘画等纳米艺术品的。和光学显微镜相比,电子显微镜的分辨率更高,已达到纳米级,因此,成为纳米艺术品成像的重要工具。三种显微镜中,扫描探针显微镜的分辨率最高,可以达原子、分子尺度,故也是纳米艺术品欣赏的主要设备。这里需要补充的是,扫描探针显微镜实际上指的是一大类显微技术,它包括扫描隧道显微镜、原子力显微镜、磁力显微镜等设备。总之,就目前的纳米艺术现状而言,要将一件纳米画或纳米雕塑成像并呈现给观众,通常需要借助高倍的电子显微镜或扫描探针显微镜。
三纳米雕塑与纳米画
纳米艺术品是多种多样、多姿多彩的,就其形式而言,主要包括纳米绘画、纳米塑像、纳米视频(纳米题材的短片、动画等)和纳米音乐等。在传统艺术中,雕塑是三维的,而画通常是二维的,极容易区分。然而在纳米艺术中,纳米绘画和纳米雕塑,特别是纳米画和纳米浮雕的界限已经变得模糊。比如说,一个基体材料表面上用数个原子、分子摆成的图形或图像,有人可能认为它是绘画,但有人可能 因此,一件立体程度较小的纳米艺术作品到底属于绘画,还是浮雕,往往要依靠个人的感觉和判断。
现在,纳米绘画和纳米塑像在纳米艺术品中占据了很大比例。此外,纳米绘画、纳米塑像在呈现过程中常需要用到计算机做后期的图像处理,如着色、修饰等。
四纳米视频与纳米音乐
和纳米雕塑、纳米画相比,纳米视频艺术作品较少,而真正的纳米音乐作品则更为罕见。
20世纪80年代以来,生物技术、计算机技术与微机电系统的兴起,使得一大批反映生物医药、微机械原理和概念的视频作品不断涌现。这些视频作品的制作很多都借助了计算机,一部分带有预言性质和科幻成分,以微纳米生物机器人,纳米、分子机械等题材为主;而另外一部分纳米视频短片则常借助动画的形式来演示纳米科技的相关知识或原理,具有科普意义。近年来,借助纳米工程与分子模拟软件,在进行科学研究与理论模拟时,有时也可得到具有一定艺术欣赏性的纳米视频作品。总之,纳米视频艺术主要指的就是上述纳米题材的短片和动画。
严格地讲,目前还很难列举出真正可以称得上纳米艺术的音乐作品。然而随着纳米技术的不断发展,以及人们对纳米结构、分子振动、核磁共振、DNA(脱氧核糖核酸)、化学键的形成与断裂等课题的不断深入研究,让纳米结构振动、频率转换、发声,让分子歌唱,已初见端倪。
五
DNA艺术
作为纳米科技的研究热点之一,基因工程近些年来发展得如火如荼。在基因工程中,DNA是生物学家关注的焦点,它精确地携带着每种生物的遗传信息。DNA分子的双螺旋结构是如此神奇,诱发了科学家们无限的艺术遐想。现在,科学家已经使用相关的纳米技术,开展了许多DNA纳米艺术的创作活动。这主要包括:
1)使用美国加州理工学院保罗・罗斯蒙德(Paul Rothemund)开发的“DNA折纸术(DNA origa-mi technique)”,像折叠一条长带子那样,把一条DNA长链反复折叠,形成需要的图形,就像用一根单线条绘制出整幅图画,代表作有“DNA纳米笑脸”等;
2)使用美国伯阳翰(Brigham Young)大学科学家的DNA模板印刷技术,在材料基体表面印刷出纳米尺度的图形;
3)利用DNA双螺旋结构中碱基对的排序,和音符相对应,进行DNA谱曲;
4)利用图像学方法,实现生物DNA中G、A、T、C四种碱基信息的可视化与图形化;
5)其他DNA艺术,如DNA状旋转楼梯、DNA状纹身等。
利用这些技术,DNA不仅可以绘画,还可以谱曲,为人们提供了高层次高品位的纳米艺术享受。
六碳纳米管与富勒烯艺术
作为准一维及准零维的碳同素异形体,碳纳米管和富勒烯具有规则而又对称的分子结构。因此,它们经常被作为纳米艺术创作的题材。概括起来,碳纳米管与富勒烯艺术创作的内容主要包括:
1)利用催化剂诱导气相化学沉积法,在机体表面形成具有艺术欣赏价值的纳米图案,代表作有“纳米奥巴马”等;
2)借助各种计算机量子化学软件,利用碳纳米管和富勒烯规则的几何构型,在虚拟环境中搭建各种奇特的构型(纳米机械/纳米机器);
3)将碳纳米管和富勒烯分子绘在墙壁上或做成立体宏观造型,进行室内外装饰,甚至可以在建筑上引入碳纳米管或富勒烯分子的元素;
4)借助碳纳米管或富勒烯这种“明星分子”,对纳米科技进行科普宣传。
七计算机辅助纳米艺术
近年来,采用计算机模拟手段开展纳米科学理论研究已表现出了强劲的发展势头。分子模拟、纳米工程设计均在纳米科学的理论探索中取得了应用,一些预言家还采用视频动画的形式来勾勒纳米科技的美好前景。事实上,不管是分子模拟、纳米工程设计,还是纳米科技的科幻视频短片,它们都有可能成为计算机辅助纳米艺术创作的源泉。
从现在纳米艺术的发展趋势来看,计算机在纳米艺术创作的主要方式和形式包括:1)分子模拟中蕴含的纳米艺术,如量子化学软件构建人形的莆田分子、分形分子等;2)利用XPLORER等纳米工程设计软件来进行纳米机器、纳米器件构造;3)利用计算机开发纳米题材的视频短片;4)对黑白电子显微镜、扫描探针显微镜艺术照片进行着色、修饰等后处理。
参考文献
[1]Cris Orfescu,Art/science/technology[EB/OL],(2009-08-16)[2011-7-14],http://www,nanoart21,org/,
[2]沈海军,纳米艺术网[EB/OL],(2007-07-6)[2011-7-14 ],http://nanoart,lingd,net/,
[3]沈海军,纳米艺术:与高科技完美结合的艺术[J],艺术科技,2009(3):129,
[4]沈海军,时东陆,纳米艺术的发展现状[J],艺术科技,2010(4):36-39,
[5]沈海军,纳米艺术简史[J],中国科技奖励,2009(2):27-29,
[6]沈海军,微纳米雕塑艺术与微纳米雕刻技术[J],艺术科技,2009(12):25,
[7]朱文娟,同济大学“首届国际纳米艺术展”开幕[N/CD],青年报(电子版),2010-11-16(3),
[8]沈海军,时东陆,纳米艺术概论[M],清华大学出版社,2010,
[9]沈海军,微纳米雕刻技术与微纳米雕塑艺术[J],艺术科技,2009(4):46,
[10]沈海军,纳米视频与纳米视频创作技术[J],艺术科技,2010(3):40-44,
[11]沈海军,纳米声乐与纳米声乐技术[J],艺术科技,2010(6):25,
[12]沈海军,DNA中的纳米艺术[J],百科知识,2009(8):56,
[13]Rothemund P w K,Folding DNA to create nanoscaleshapes and patterns[J],Nature,2005,440:297-302,
[14]Becerril H A,Woolley A T,DNA Shadow Lithography[J],Small,2007(9):1534,
[15]梁祖霞,生命的旋律――“DNA音乐”[J],科技潮,2001(11):83,
[16]沈海军,纳米碳管艺术[J],百科知识,2009(1):13,
纳米材料论文 14
1.1人工纳米材料造成内皮损伤:
血管内皮是血管壁以及血液之间单层性的细胞屏障。从生理解剖结构的角度上来说,血管内盘能够及时促进激活性子与抑制因子的合成、分泌反应,从而使血管系统完整性得到完成,确保血管张力处于平衡状态。相关研究中提示,对于存在有内皮功能障碍的人体而言,出现动脉粥样硬化及相关疾病的可能性将明显增大。从人工纳米材料的角度上来说,造成内皮损伤的机制主要包括如下几个方面:其一,在与细胞直接接触并产生介导反应的条件下诱发细胞机械性损伤;其二,对血管内皮细胞造成一定的刺激作用,通过释放炎性因子以及氧自由基成分的方式,造成细胞生长受阻;其三,对内皮细胞的生长产生抑制影响,组织缺血下的心血管重建受不良影响,可能表现为心肌缺血症状。
1.2人工纳米材料造成血栓损伤:
血小板在凝血、止血过程当中具有相当关键的作用。与之相对应的是,凝血机制的异常也会与血小板的聚集水平存在明显关系,由此可能产生血栓。人工纳米材料可能导致与血小板发生电荷中和反应,造成血小板的聚集。除此以外,在人工纳米颗粒材料所诱发的内皮损伤机制作用之下,组织纤溶酶原活性物的分泌水平有一定的降低趋势,血小板被激活,最终表现为凝血前状态,潜在诱发血栓等相关疾病的可能性。
2人工纳米材料对心血管系统的损伤机制
2.1纳米碳基物材料对心血管系统的损伤:
纳米碳基物是纳米材料中关键性的构成要素之一,以碳纳米管为主要代表。此类材料的主要特点在于:机械强度高、硬度高、粒径小。形状上与常规的石棉纤维材料相似。但在作用于生物体的过程当中,难以发生代谢。除此以外,此类纳米材料还具有良好的电子受体优势,能够与π电子系发生反应,促进材料与生物化学成分的有机结合。在纳米碳基物的影响下,对于心血管系统的损伤可能涉及到以下两个方面的问题:首先,从动物水平的角度上来说,血小板的凝聚很大程度上受到糖蛋白结合受体参与水平的影响。而在纳米碳基物的应用下,可能致使糖蛋白结合受体发生激活反应,诱发心血管损伤。相关研究人员在以大鼠为模型的受体试验中研究发现:多壁、单壁碳纳米管均会导致大鼠颈动脉血栓形成速度的增快,说明两种纳米碳基物均对于血小板聚集有促进影响。除此以外,其还有可能造成受体的自主神经系统被破坏,表现为炎性反应。有关研究人员同样以大鼠为模型,在暴露于碳纳米颗粒环境后,大鼠模型表现出心率的降低趋势,主要机制在于:碳纳米颗粒材料造成了交感神经、迷走神经的破坏,在心血管系统支配中无法保持平衡关系。对于人体而言,严重时可能诱发心律失常,乃至心原性猝死的问题。其次,从细胞水平的角度上来说,有关研究人员使用纳米炭黑颗粒对人脐静脉内皮细胞进行染毒,持续24.0h。观察发现:受到纳米碳黑颗粒材料的影响,造成细胞形态学发生改变,细胞质膜发生损伤,细胞增生反应受到了一定的抑制影响。除此以外,有关研究中还认为,对于纳米碳黑颗粒一类材料而言,会对内皮型一氧化氮合酶与间隙连接蛋白-37的合成反应造成不良影响,在降解内皮细胞质膜的情况下,可能诱发动脉粥样硬化等相关疾病。除对心血管系统造成损伤影响以外,在纳米炭黑颗粒材料作用之下,受体血管损伤后机体的自主修复功能也出现一定缺陷,故有关研究中通过大鼠模型试验证实:多壁碳纳米管材料会对大鼠血管外膜成纤维细胞活性造成抑制,造成模型内丙二醛含量的异常升高。
2.2纳米金属粉对心血管系统的损伤:
在纳米颗粒吸入并达到肺间质部位以后,可能穿过肺泡上皮细胞,经由间质组织,参与到受体的血液循环反应过程当中,或者是通过进入淋巴循环系统的方式,进一步分布扩散至全身。与此同时,纳米金属粉材料中释放的大比例金属离子也可能通过自由基产生的方式,造成心血管系统损伤加剧。在纳米金属粉的影响下,对于心血管系统的损伤可能涉及到以下两个方面的问题:首先,从动物水平的角度上来说,相关的试验研究中分析认为[4]:对于暴露在纳米金属粉环境下的小鼠模型而言,处死后解剖结果显示其肺部银含量可达到1.5~1.7ug单位。同时,随着处死时间的延长,肺部中的银检出含量将得到明显的减低。同时,体内团聚的纳米金属粉释放银离子在小鼠被处死7d后仍然可在肺泡巨噬细胞中被检出。根据相关的试验结果认为:虽气管滴注下的银纳米团颗粒以团聚体的方式残留在肺部,但呼吸暴露下的纳米银颗粒可能经由肺部进入血液循环系统,造成心血管系统的损伤。其次,从细胞水平的角度上来说,纳米金属粉所生成的银纳米颗粒以及金纳米颗粒都可能在氧化反应的作用之下对细胞凋亡产生一定的诱导反应,由此影响心血管的正常运行。有关研究中尝试以小� 除此以外,在细胞色素C迅速释放的条件下,Bax蛋白成分白转移至线粒体内,由于在此类纳米材料的介导反应下,细胞凋亡具有线粒体依赖的特征,故而将导致活性氧自由基成分的提升,对应的JNK激酶的活性水平明显增长。
3结语
本文在结合近年来相关研究成果以及文献资料的基础之上,针对有关人工纳米材料对心血管系统损伤方面所取得的研究进展进行了总结与归纳,认为包括纳米碳基物材料以及纳米金属粉在内的人工纳米材料都会造成内皮损伤以及血栓损伤,需要临床引起重视。
纳米材料论文 15
研究纳米材料和纳米结构的重要科学意义在于它开辟了人们认识自然的新层次,是知识创新的源泉。由于纳米结构单元的尺度(1~100urn)与物质中的许多特征长度,如电子的德布洛意波长、超导相干长度、隧穿势垒厚度、铁磁性临界尺寸相当,从而导致纳米材料和纳米结构的物理、化学特性既不同于微观的原子、分子,也不同于宏观物体,从而把人们探索自然、创造知识的能力延伸到介于宏观和微观物体之间的中间领域。在纳米领域发现新现象,认识新规律,提出新概念,建立新理论,为构筑纳米材料科学体系新框架奠定基础,也将极大丰富纳米物理和纳米化学等新领域的研究内涵。世纪之交高韧性纳米陶瓷、超强纳米金属等仍然是纳米材料领域重要的研究课题;纳米结构设计,异质、异相和不同性质的纳米基元(零维纳米微粒、一维纳米管、纳米棒和纳米丝)的组合。纳米尺度基元的表面修饰改性等形成了当今纳米材料研究新热点,人们可以有更多的自由度按自己的的意愿合成具有特殊性能的新材料。利用新物性、新原理、新方法设计纳米结构原理性器件以及纳米复合传统材料改性正孕育着新的突破。
1研究形状和趋势
纳米材料制备和应用研究中所产生的纳米技术很可能成为下一世纪前20年的主导技术,带动纳米产业的发展。世纪之交世界先进国家都从未来发展战略高度重新布局纳米材料研究,在千年交替的关键时刻,迎接新的挑战,抓紧纳米材料和柏米结构的立项,迅速组织科技人员围绕国家制定的目标进行研究是十分重要的。
纳米材料诞生州多年来所取得的成就及对各个领域的影响和渗透一直引人注目。进入90年代,纳米材料研究的内涵不断扩大,领域逐渐拓宽。一个突出的特点是基础研究和应用研究的衔接十分紧密,实验室成果的转化速度之快出乎人们预料,基础研究和应用研究都取得了重要的进展。美国已成功地制备了晶粒为50urn的纳米Cu的决体材料,硬度比粗晶Cu提高5倍;晶粒为7urn的Pd,屈服应力比粗晶Pd高5倍;具有高强度的金属间化合物的增塑问题一直引起人们的关注,晶粒的纳米化为解决这一问题带来了希望,纳米金属间化合物FqsAJZCr室成果的转化,到目前为止,已形成了具有自主知识产权的几家纳米粉体产业,睦次鹦米氧化硅。氧化钛、氮化硅核区个文的易实他借个缈阳放宽在纳米添加功能陶瓷和结构陶瓷改性方面也取得了很好的效果。
根据纳米材料发展趋势以及它在对世纪高技术发展所占有的重要地位,世界发达国家的政府都在部署本来10~15年有关纳米科技研究规划。美国国家基金委员会(NSF)1998年把纳米功能材料的合成加工和应用作为重要基础研究项目向全国科技界招标;美国DARPA(国家先进技术研究部)的几个计划里也把纳米科技作为重要研究对象;日本近匕年来制定了各种计划用于纳米科技的研究,例如Ogala计划、ERATO计划和量子功能器件的基本原理和器件利用的研究计划,1997年,纳米科技投资1.28亿美元;德国科研技术部帮助联邦政府制定了1995年到2010年15年发展纳米科技的计划;英国政府出巨资资助纳米科技的研究;1997年西欧投资1.2亿美元。据1999年7月8日《自然》最新报道,纳米材料应用潜力引起美国白宫的注意;美国总统克林顿亲自过问纳米材料和纳米技术的研究,决定加大投资,今后3年经费资助从2.5亿美元增
加至5亿美元。这说明纳米材料和纳米结构的研究热潮在下一世纪相当长的一段时间内保持继续发展的势头。
2国际动态和发展战略
1999年7月8日《自然》(400卷)重要消息题为“美国政府计划加大投资支持纳米技术的兴起”。在这篇文章里,报道了美国政府在3年内对纳米技术研究经费投入加倍,从2.5亿美元增加到5亿美元。克林顿总统明年2月将向国会提交支持纳米技术研究的议案请国会批准。为了加速美国纳米材料和技术的研究,白宫采取了临时紧急措施,把原1.97亿美元的资助强度提高到2.5亿美元。《美国商业周刊》8月19日报道,美国政府决定把纳米技术研究列人21世纪前10年前11个关键领域之一,《美国商业周刊》在掌握21世纪可能取得重要突破的3个领域中就包括了纳米技术领域(其它两个为生命科学和生物技术,从外星球获得能源)。美国白宫之所以在20世纪即将结束的关键时刻突然对纳米材料和技术如此重视,其原因有两个方面:一是德科学技术部1996年对2010年纳米技术的市场做了预测,估计能达到14400亿美元,美国试图在这样一个诱人的市场中占有相当大的份额。美国基础研究的负责人威廉姆斯说:纳米技术本来的应用远远超过计算机工业。美国白宫战略规划办公室还认为纳米材料是纳米技术最为重要的组成部分。在《自然》的报道中还特别提到美国已在纳米结构组装体系和高比表面纳米颗粒制备与合成方面领导世界的潮流,在纳米功能涂层设计改性及纳米材料在生物技术中的应用与欧共体并列世界第一,纳米尺寸度的元器件和纳米固体也要与日本分庭抗礼。1999年7月,美国加尼福尼亚大学洛杉矾分校与惠普公司合作研制成功100urn芯片,美国明尼苏达大学和普林
斯顿大学于1998年制备成功量子磁盘,这种磁盘是由磁性纳米棒组成的纳米阵列体系,10-”bit/s尺寸的密度已达109bit/s,美国商家已组织有关人员迅速转化,预计2005年市场为400亿美元。1988年法国人首先发现了巨磁电阻效应,到1997年巨磁电阻为原理的纳米结构器件已在美国问世,在磁存储、磁记忆和计算机读写磁头将有重要的应用前景。
最近美国柯达公司研究部成功地研究了一种即具有颜料又具有分子染料功能的新型纳米粉体,预计将给彩色印橡带来革命性的变革。纳米粉体材料在橡胶、颜料、陶瓷制品的改性等方面很可能给传统产业和产品注入新的高科技含量,在未来市场上占有重要的份额。纳米材料在医药方面的应用研究也使人瞩目,正是这些研究使美国白宫认识到纳米材料和技术将占有重要的战略地位。原因之二是纳米材料和技术领域是知识创新和技术创新的源泉,新的规律新原理的发现和新理论的建立给基础科学提供了新的机遇,美国计划在这个领域的基础研究独占“老大”的地位。
面对这种挑战的形势,中国在这个领域的研究能不能继续保持第二阶梯的前列位置,能不能在下世纪前周年,在纳米材料和技术的市场中占有一定比例的份额,这是值得我们深思的重要问题。中国科学院在我国纳米材料研究占有极其重要的地位,在纳米粉体的合成、纳米金属和纳米陶瓷体材料的制备、纳米碳管定向生长和超长纳米碳管的合成、纳米同轴电缆的制备和合成、有序阵列纳米体系的设计和合成、新合成方法的创新等在国内外都做了有影响的工作。在《自然》上1篇,《科学》上4篇,影响因子在3以上的论文6篇,申请发明专利28项,已获发明专利7项,有5项专利获得实施,扶植了国内一些纳米产业,这些都为进一步工作奠定了基础。
为了使中国科学院在世纪之交乃至下一世纪在纳米材料和技术研究在国际上占有一席之地,在国际市场上占有一份额,从前瞻性、战略性、基础性来考虑应该成立中国科学院纳米材料和技术研究中心,建议北方成立一个以物质科学中心为基础的研究中心(包括金属研究所),在南方建立一个以合肥地区中国科学院固体物理所和中国科技大学为基础的研究中心,主要任务是以基础研究为主,做好基础研究与应用研究的衔接和成果的转化。
在富有挑战的对世纪,世界各国都对富有战略意义的纳米科技领域予以足够的重视,特别是发达国家都从战略的高度部署纳米材料和纳米科技的研究,目的是提高在未来10年乃至20年在国际中的竞争地位。从各国对纳米材料和纳米科技的部署来看,发展纳米材料和纳米科技的战略是:()以未来的经济振兴和国家实力的需求为目标,牵引纳米材料的基础研究、应用开发研究;(2)组织多学科的科技人员交叉创新,做到基础研究、应用研究并举,纳米科学、纳米技术并举,重视基础研究和应用研究的衔接,重视技术集成;(3)重视发展纳米材料和技术改造传统产品,提高高技术含量,同时部署纳米材料和纳米技术在环境、能源和信息等重要领域的应用,实现跨越式的发展。
3国内研究进展
我国纳米材料研究始于80年代末,“八五”期间,“纳米材料科学”列入国家攀登项目。国家自然科学基金委员会、中国科学院、国家教委分别组织了8项重大、重点项目,组织相关的科技人员分别在纳米材料各个分支领域开展工作,国家自然科学基金委员会还资助了20多项课题,国家“863”新材料主题也对纳米材料有关高科技创新的课题进行立项研究。1996年以后,纳米材料的应用研究出现了可喜的苗头,地方政府和部分企业家的介人,使我国纳米材料的研究进入了以基础研究带动应用研究的新局面。
目前,我国有60多个研究小组,有600多人从事纳米材料的基础和应用研究,其中,承担国家重大基础研究项目的和纳米材料研究工作开展比较早的单位有:中国科学院上海硅酸盐研究所、南京大学。中国科学院固体物理研究所、金属研究所、物理研究所、中国科技大学、中国科学院化学研究所、清华大学,还有吉林大学烹北大学、西安交通大学、天津大学。青岛化工学院、华东师范大学\华东理工大学、浙江大学、中科院大连化学物理研究所、长春应用化学
研究所、长春物理研究所、感光化学研究所等也相继开展了纳米材料的基础研究和应用研究。我国纳米材料基础研究在过去10年取得了令人瞩目的重要研究成果。已采用了多种物理、化学方法制备金属与合金(晶态、非晶态及纳米微晶)氧化物、氮化物、碳化物等化合物纳米粉体,建立了相应的设备,做到纳米微粒的尺寸可控,并制成了纳米薄膜和块材。在纳米材料的表征、团聚体的起因和消除、表面吸附和脱附、纳米复合微粒和粉体的制取等各个方面都有所创新,取得了重大的进展,成功地研制出致密度高、形状复杂、性能优越的纳米陶瓷;在世界上首次发现纳米氧化铝晶粒在拉伸疲劳中应力集中区出现超塑性形变;在颗粒膜的巨磁电阻效应、磁光效应和自旋波共振等方面做出了创新性的成果;在国际上首次发现纳米类钙钛矿化合物微粒的磁嫡变超过金属Gd;设计和制备了纳米复合氧化物新体系,它们的中红外波段吸收率可达92%,在红外保暖纤维得到了应用;发展了非晶完全晶化制备纳米合金的新方法;发现全致密纳米合金中的反常Hall-Petch效应。
近年来,我国在功能纳米材料研究上取得了举世瞩目的重大成果,引起了国际上的关注。一是大面积定向碳管阵列合成:利用化学气相法高效制备纯净碳纳米管技术,用这种技术合成的纳米管,孔径基本一致,约20urn,长度约100pm,纳米管阵列面积达到3mmX3mm。其定向排列程度高,碳纳米管之间间距为100pm。这种大面积定向纳米碳管阵列,在平板显示的场发射阴极等方面有着重要应用前景。这方面的文章发表在1996年的美国《科学》杂志上。二是超长纳米碳管制备:首次大批量地制备出长度为2~3mm的超长定向碳纳米管列阵。这种超长碳纳米管比现有碳纳米管的长度提高1~2个数量级。该项成果已发表于1998年8月出版的英国《自然》杂志上。英国《金融时报》以“碳纳米管进入长的阶段”为题介绍了有关长纳米管的工作。三是氮化嫁纳米棒制备:首次利用碳纳米管作模板成功地制备出直径为3~40urn、长度达微米量级的发蓝光氮化像一维纳米棒,并提出了碳纳米管限制反应的概念。该项成果被评为1998年度中国十大科技新闻之一。四是硅衬底上碳纳米管阵列研制成功,推进碳纳米管在场发射平面和纳米器件方面的应用。五是唯一维纳米丝和纳米电缆:应用溶胶一凝胶与碳热还原相结合的新方法,首次合成了碳化或(TaC)纳米丝外包覆绝缘体SIOZ和TaC纳米丝外包覆石墨的纳米电缆,以及以S江纳米丝为芯的纳米电缆,当前在国际上仅少数研究组能合成这种材料。该成果研究论文在瑞典召开的1998年第四届国际纳米会议宣读后,许多外国科学家给予高度评价。六是用苯热法制备纳米氮化像微晶;发现了非水溶剂热合成技术,首次在300℃左右制成粒度达30urn的氮化锌微晶。还用苯合成制备氮化铬(CrN)、磷化钻(COZP)和硫化锑(Sb。S。)纳米微晶,在1997年的《科学》杂志上。七是用催化热解法制成纳米金刚石;在高压釜中用中温(70℃)催化热解法使四氯化碳和钠反应制备出金刚石纳米粉,在1998年的《科学》杂志上。美国《化学与工程新闻》杂志还发表题为“稻草变黄金?从四氯化碳(CC14)制成金刚石”~文,予以高度评价。
我国纳米材料和纳米结构的研究已有10年的工作基础和工作积累,在“八五”研究工作的基础上初步形成了几个纳米材料研究基地,中科院上海硅酸盐研究所、南京大学、中科院固体物理所、中科院金属所、物理所、中国科技大学、清华大学和中科院化学所等已形成我国纳米材料和纳米结构基础研究的重要单位。无论从研究对象的前瞻性、基础性,还是成果的学术水平和适用性来分析,都为我国纳米材料研究在国际上争得一席之地,促进我国纳米材料研究的发展,培养高水平的纳米材料研究人才作出了贡献。在纳米材料基础研究和应用研究的衔接,加快成果转化也发挥了重要的作用。目前和今后一个时期内这些单位仍然是我国纳米材料和纳米结构研究的中坚力量。
在过去10年,我国已建立了多种物理和化学方法制备纳米材料,研制了气体蒸发、磁控溅射、激光诱导CVD、等离子加热气相合成等10多台制备纳米材料的装置,发展了化学共沉淀、溶胶一凝胶、微乳液水热、非水溶剂合成和超临界液相合成制备包括金属、合金、氧化物、氮化物、碳化物、离子晶体和半导体等多种纳米材料的方法,研制了性能优良的多种纳米复合材料。近年来,根据国际纳米材料研究的发展趋势,建立和发展了制备纳米结构(如纳米有序阵列体系、介孔组装体系、MCM-41等)组装体系的多种方法,特别是自组装与分子自组装、模板合成、碳热还原、液滴外延生长、介孔内延生长等也积累了丰富的经验,已成功地制备出多种准一维纳米材料和纳米组装体系。这些方法为进一步研究纳米结构和准一纳米材料的物性,推进它们在纳米结构器件的应用奠定了良好的基础。纳米材料和纳米结构的评价手段基本齐全,达到了国际90年代末的先进水平。
综上所述,“八五”期间我国在纳米材料研究上获得了一批创新性的成果,形成了一支高水平的科研队伍,基础研究在国际上占有一席之地,应用开发研究也出现了新局面,为我国纳米材料研究的继续发展奠定了基础。10年来,我国科技工作者在国内外学术刊物上共发表纳米材料和纳米结构的论文2400多篇,在国际上排名第五位,其中纳米碳管和纳米团簇在1998年度欧洲文献情报交流会上德国马普学会固体所一篇研究报告中报道中国科技工作者已超过德国,在国际排名第三位,在国际历次召开的有关纳米材料和纳米结构的国际会议上,我国纳米材料科技工作者共做邀请报告24次。到目前为止,纳米材料研究获得国家自然科学三等奖1项,国家发明奖2项;院部级自然科学一、二等奖3项,发明一、H等奖3项,科技进步Th等奖1项;申请专利79项,其中发明专利占50%,已正式授权的发明专利6项,已实现成果转化的发明专利6项。最近几年,我国纳米科技工作者在国际上发表了一些有影响的学术论文,引起了国际同行的关注和称赞。在《自然》和《科学》杂志上发表有关纳米材料和纳米结构制备方面的论文6篇,影响因子在6以上的学术论文,J.AIn.Chem.Soc.)近20篇,影响因子在3以上的31篇,被SCI和EI收录的文章占整个的59%。1998年6月在瑞典斯特哥尔摩召开的国际第四届纳米材料会议上,对中国纳米材料研究给予了很高评价,指出这几年来中国在纳米材料制备方面取得了激动人心的成果,在大会总结中选择了8个纳米材料研究式作取得了比较好的国家在闭幕式上进行介绍,中国是在美国、日本、德国、瑞典之后进行了大会发言。
纳米材料论文 16
1微乳反应器原理
在微乳体系中,用来制备纳米粒子的一般是W/O型体系,该体系一般由有机溶剂、水溶液。活性剂、助表面活性剂4个组分组成。常用的有机溶剂多为C6~C8直链烃或环烷烃;表面活性剂一般有AOT[2一乙基己基]磺基琥珀酸钠]。AOS、SDS(十二烷基硫酸钠)、SDBS(十六烷基磺酸钠)阴离子表面活性剂、CTAB(十六烷基三甲基溴化铵)阳离子表面活性剂、TritonX(聚氧乙烯醚类)非离子表面活性剂等;助表面活性剂一般为中等碳链C5~C8的脂肪酸。
W/O型微乳液中的水核中可以看作微型反应器(Microreactor)或称为纳米反应器,反应器的水核半径与体系中水和表面活性剂的浓度及种类有直接关系,若令W=[H2O/[表面活性剂],则由微乳法制备的纳米粒子的尺寸将会受到W的影响。利用微胶束反应器制备纳米粒子时,粒子形成一般有三种情况(可见图1、2、3所示)。
(l)将2个分别增溶有反应物A、B的微乳液混合,此时由于胶团颗粒间的碰撞,发生了水核内物质的相互交换或物质传递,引起核内的化学反应。由于水核半径是固定的,不同水核内的晶核或粒子之间的物质交换不能实现,所以水核内粒子尺寸得到了控制,例如由硝酸银和氯化钠反应制备氯化钠纳粒。
(2)一种反应物在增溶的水核内,另一种以水溶液形式(例如水含肼和硼氢化钠水溶液)与前者混合。水相内反应物穿过微乳液界面膜进入水核内与另一反应物作用产生晶核并生长,产物粒子的最终粒径是由水核尺寸决定的。例如,铁,镍,锌纳米粒子的制备就是采用此种体系。
(3)一种反应物在增溶的水核内,另一种为气体(如O2、NH3,CO2),将气体通入液相中,充分混合使两者发生反应而制备纳米颗粒,例如,Matson等用超临界流体一反胶团方法在AOT一丙烷一H2O体系中制备用Al(OH)3胶体粒子时,采用快速注入干燥氨气方法得到球形均分散的超细Al(OH)3粒子,在实际应用当中,可根据反应特点选用相应的模式。
2微乳反应器的形成及结构
和普通乳状液相比,尽管在分散类型方面微乳液和普通乳状液有相似之处,即有O/W型和W/O型,其中W/O型可 但是微乳液是一种热力学稳定的体系,它的形成是自发的,不需要外界提供能量。正是由于微乳液的形成技术要求不高,并且液滴粒度可控,实验装置简单且操作容易,所以微乳反应器作为一种新的超细颗粒的制备方法得到更多的研究和应用。
2.1微乳液的形成机理
Schulman和Prince等提出瞬时负界面张力形成机理。该机理认为:油/水界面张力在表面活性剂存在下将大大降低,一般为l~10mN/m,但这只能形成普通乳状液。要想形成微乳液必须加入助表面活性剂,由于产生混合吸附,油/水界面张力迅速降低达10-3~10-5mN/m,甚至瞬时负界面张力Y<0。但是负界面张力是不存在的,所以体系将自发扩张界面,表面活性剂和助表面活性剂吸附在油/水界面上,直至界面张力恢复为零或微小的正值,这种瞬时产生的负界面张力使体系形成了微乳液。若是发生微乳液滴的聚结,那么总的界面面积将会缩小,复又产生瞬时界面张力,从而对抗微乳液滴的聚结。对于多组分来讲,体系的Gibbs公式可表示为:
--dγ=∑Гidui=∑ГiRTdlnCi
(式中γ为油/水界面张力,Гi为i组分在界面的吸附量,ui为I组分的化学位,Ci为i组分在体相中的浓度)
上式表明,如果向体系中加入一种能吸附于界面的组分(Г>0),一般中等碳链的醇具有这一性质,那么体系中液滴的表面张力进一步下降,甚至出现负界面张力现象,从而得到稳定的微乳液。不过在实际应用中,对一些双链离子型表面活性剂如AOT和非离子表面活性剂则例外,它们在无需加入助表面活性剂的情况下也能形成稳定的微乳体系,这和它们的特殊结构有关。
2.2微乳液的结构
RObbins,MitChell和Ninham从双亲物聚集体的分子的几何排列角度考虑,提出了界面膜中排列的几何排列理论模型,成功地解释了界面膜的优先弯曲和微乳液的结构问题。
目前,有关微乳体系结构和性质的研究方法获得了较大的发展,较早采用的有光散射、双折射、电导法、沉降法、离心沉降和粘度测量法等;较新的有小角中子散射和X射线散射、电子显微镜法。正电子湮灭、静态和动态荧光探针法、NMR、ESR(电子自旅共振)、超声吸附和电子双折射等。
3微乳反应器的应用――纳米颗粒材料的制备
3.1纳米催化材料的制备
利用W/O型微乳体系可以制备多相反应催化剂,Kishida。等报道了用该方法制备
Rh/SiO2和Rh/ZrO2载体催化剂的新方法。采用NP-5/环已烷/氯化铑微乳体系,非离子表面活性剂NP-5的浓度为0.5mol/L,氯化铑在溶液中浓度为0.37mol/L,水相体积分数为0.11。25℃时向体系中加入还原剂水含肼并加入稀氨水,然后加入正丁基醇锆的环乙烷溶液,强烈搅拌加热到40℃而生成淡黄色沉淀,离心分离和乙醇洗涤,80℃干燥并在500℃的灼烧3h,450℃下用氧气还原2h,催化剂命名为“ME”。通过性能检测,该催化剂活性远比采用浸渍法制得的高。
3.2无机化合物纳粒的制备
利用W/O型微乳体系也可以制备无机化合物,卤化银在照像底片乳胶中应用非常重要,尤其是纳米级卤化银粒子。用水一AOT一烷烃微乳体系合成了AgCl和AgBr纳米粒子,AOT浓度为0.15mol/L,第一个微乳体系中硝酸银为0.4mol/L,第二个微乳体系中NaCl或NaBr为0.4mol/L,混合两微乳液并搅拌,反应生成AgCl或AgBr纳米颗粒。
又以制备CaCO3为例,微乳体系中含Ca(OH)2,向体系中通入CO2气体,CO2溶入微乳液并扩散,胶束中发生反应生成CaCO3颗粒,产物粒径为80~100nm。
3.3聚合物纳粒的制备
利用W/O型微乳体系可以制备有机聚丙烯酸胺纳粒。在20mlAOTt――正己烷溶液中加入0.1mlN-N一亚甲基双丙烯酰胺(2mg/rnl)和丙烯酰胺(8mg/ml)的混合物,加入过硫酸铵作为引发剂,在氮气保护下聚合,所得产物单分散性较好。
3.4金属单质和合金的制备
利用W/O型微乳体系可以制备金属单质和合金,例如在AOT-H2O-n―heptane体系中,一种反相微胶束中含有0.lmol/LNiCl2,另一反相微胶束中含有0.2mol/LNaBH4,混合搅拌,产物经分离、干燥并在300℃惰性气体保护下结晶可得镍纳米颗粒。在某微乳体系中含有0.0564mol/L,FeC12和0.2mol/LNiCl2,另一体系中含有0.513mol/LNaBH4溶液,混合两微乳体系进行反应,产物经庚烷、丙酮洗涤,可以得到Fe-Ni合金微粒(r=30nm)。
3.5磁性氧化物颗粒的制备
利用W/O型微乳体系可以制备氧化物纳米粒子,例如在AOT-H2O-n-heptane体系中,一种乳液中含有0.15mol/LFeCl2和0.3mol/LFeCl3,另一体系中含有NH4OH,混合两种微乳液充分反应,产物经离心,用庚烷、丙酮洗涤并干燥,可以得到Fe3O4纳粒(r=4nm)。
3.6高温超导体的制备
利用W/O型微乳体系可以合成超导体,例如在水一CTAB一正丁醇一辛烷微乳体系中,一个含有机钇、钡和铜的硝酸盐的水溶液,三者之比为1:2:3;另一个含有草酸铵溶液作为水相,混合两微乳液,产物经分离,洗涤,干燥并在820℃灼烧2h,可以得到Y-Ba-Cu―O超导体,该超导体的Tc为93K。另外在阴离子表面活性剂IgegalCO-430微乳体系中,混合Bi、Pb、Sr、Ca和Cu的盐及草酸盐溶液,最终可以制得Bi-Pb-Sr-Ca-Cu―O超导体,经DC磁化率测定,可知超导转化温度为Tc=112K,和其它方法制备的超导体相比,它们显示了更为优越的性能。
目前对纳米颗粒材料的研究方法比较多,较直接的方法有电镜观测(SEM、TEM、STEM、STM等);间接的方法有电子、X一射线衍射法(XRD),中子衍射,光谱方法有EXAFS,NEXAFS,SEX-AFS,ESR,NMR,红外光谱,拉曼光谱,紫外一可见分光光度法(UV-VIS),荧光光谱及正电子湮没,动态激光光散射(DLS)等。
4结语