《等腰三角形(优秀8篇)》
等边三角形(又称正三角形),为三边相等的三角形,其三个内角相等,均为60°,它是锐角三角形的一种。有一个内角为60°的等腰三角形是等边三角形。为大家精心整理了等腰三角形(优秀8篇),您的肯定与分享是对小编最大的鼓励。
初中数学等腰三角形的性质教案 篇1
一、教学目标:
1.使学生掌握等腰三角形的判定定理及其推论;
2.掌握等腰三角形判定定理的运用;
3.通过例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力;
4.通过自主学习的发展体验获取数学知识的感受;
5.通过知识的纵横迁移感受数学的辩证特征。
二、教学重点:
等腰三角形的判定定理
三、教学难点
性质与判定的区别
四、教学流程
1、新课背景知识复习
(1)请同学们说出互逆命题和互逆定理的概念
估计学生能用自己的语言说出,这里重点复习怎样分清题设和结论。
(2)等腰三角形的性质定理的内容是什么?并检验它的逆命题是否为真命题?
启发学生用自己的语言叙述上述结论,教师稍加整理后给出规范叙述:
1.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等。(简称“等角对等边”).
由学生说出已知、求证,使学生进一步熟悉文字转化为数学语言的方法。
已知:如图,△ABC中,∠B=∠C.
求证:AB=AC.
教师可引导学生分析:
联想证有关线段相等的知识知道,先需构成以AB、AC为对应边的全等三角形。因为已知∠B=∠C,没有对应相等边,所以需添辅助线为两个三角形的公共边,因此辅助线应从A点引起。再让学生回想等腰三角形中常添的辅助线,学生可找出作∠BAC的平分线AD或作BC边上的高AD等证三角形全等的不同方法,从而推出AB=AC.
注意:(1)要弄清判定定理的条件和结论,不要与性质定理混淆。
(2)不能说“一个三角形两底角相等,那么两腰边相等”,因为还未判定它是一个等腰三角形。
(3)判定定理得到的结论是三角形是等腰三角形,性质定理是已知三角形是等腰三角形,得到边边和角角关系。2.推论1:三个角都相等的三角形是等边三角形。 推论2:有一个角等于60°的等腰三角形是等边三角形。
要让学生自己推证这两条推论。
小结:证明三角形是等腰三角形的方法:①等腰三角形定义;②等腰三角形判定定理。
证明三角形是等边三角形的方法:①等边三角形定义;②推论1;③推论2.
3.应用举例
例1.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形。
分析:让学生画图,写出已知求证,启发学生遇到已知中有外角时,常常考虑应用外角的两个特性①它与相邻的内角互补;②它等于与它不相邻的两个内角的和。要证AB=AC,可先证明∠B=∠C,因为已知∠1=∠2,所以可以设法找出∠B、∠C与∠
1、∠2的关系。
已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC.
求证:AB=AC.
证明:(略)由学生板演即可。
补充例题:(投影展示)
1.已知:如图,AB=AD,∠B=∠D.
求证:CB=CD.
分析:解具体问题时要突出边角转换环节,要证CB=CD,需构造一个以 CB、CD为腰的等腰三角形,连结BD,需证∠CBD=∠CDB,但已知∠B=∠D,由AB=AD可证∠ABD=∠ADB,从而证得∠CDB=∠CBD,推出CB=CD.
证明:连结BD,在
中,
(已知)
(等边对等角)
(已知)
即
(等角对等边)
小结:求线段相等一般在三角形中求解,添加适当的辅助线构造三角形,找出边角关系。
2.已知,在 中,
的平分线与
的外角平分线交于D,过D作DE//BC交AC与F,交AB于E,求证:EF=BE-CF.
分析:对于三个线段间关系,尽量转化为等量关系,由于本题有两个角平分线和平行线,可以通过角找边的关系,BE=DE,DF=CF即可证明结论。
证明: DE//BC(已知)
,
BE=DE,同理DF=CF. EF=DE-DF EF=BE-CF 小结:
(1)等腰三角形判定定理及推论。
(2)等腰三角形和等边三角形的证法。
七。练习
教材 P.75
初中数学等腰三角形的性质教案 篇2
教学重点:
认识等腰三角形和等边三角形以及它们的特征
教学目标:
1、让学生在实际操作中认识等腰三角形和等边三角形,知道等腰三角形边和角的名称,知道等腰三角形两个底角相等,等边三角形3个内角相等。
2、让学生在探索图形特征以及相关结论的活动中,进一步发展空间观念,锻炼思维能力。
3、让学生在学习活动中,进一步产生对数学的好奇心,增强动手能力和创新意识。
教学准备:
长方形、正方形纸,剪刀、尺等
教学过程:
一、复习:关于三角形,你有那些知识?
1、按角分成三种角
2、三个内角和是180度
算第三个角的度数,如果是一般三角形,那就用180去减;如果是直角三角形,那就是90去减
二、认识等腰三角形
1、比较老师手边的两块三角板,他们有什么相同?(都是直角三角形)
有什么不同?(其中有一块三角板的两条边相等,两个角相等;而另一块三角板的角和边都不相同。)
指出:像这种两条边相等的三角形,我们叫它等腰三角形
2、折一折、剪一剪
取一张长方形纸,对折;画出它的对角线,沿对角线剪开;展开
观察:这样剪出来的三角形就是我们今天要认识的等腰三角形。想一想:为什么要对折后再剪呢?(这样剪出来的两条边肯定是相等的。)
除了两条边是相等的,还有什么也是相等的?你是怎么知道的?
等腰三角形的教学设计 篇3
一、教学目标
1.知识与技能
(1)理解公理,能够举一反三,证明等腰三角形的性质定理;
(2)能够通过全等三角形的判定定理证明等腰三角形的定理,进一步感受证明过程;
(3)熟悉证明的基本步骤和书写格式
2.过程与方法
2.通过诱导、启发学生利用全等三角形证明等腰三角形的定理,发展学生的初步演绎逻辑推理的能力,鼓励学生在交流探索中发现证明的多样性,提高逻辑思维水平。
3.情感态度及价值观
使学生渗透数学思想,培养学生合作交流的意识,同时使学生通过独立思考去考虑问题的能力加强,培养良好的学习习惯。
二、教学重点、难点
重点:探索证明等腰三角形的性质定理的思路与方法,掌握证明的基本要求和方法。
难点:通过探索利用全等三角形的判定与定义证明等腰三角形的性质定理,明确推理证明的基本要求。
三、教具准备
(两个等腰三角形、彩色粉笔、教案、尺子)
四、教学过程
1.复习旧知,引入新知
(1)请同学们回忆判定三角形全等的公理有哪些?
公理:三边对应相等的两个三角形全等(SSS)
公理:两边及其夹角对应相等的两个三角形全等(SAS)
公理:两角及其夹边对应相等的两个三角形全等(ASA)
(2)推论呢?
两角分别相等且其中一组等角的对边相等的两个三角形全等(AAS)
(3)根据全等三角形的定义,我们可以得到定理:全等三角形的对应边相等、对应角相等
学生讨论:等腰三角形有哪些性质吗?根据等腰三角形的性质给予证明。
设计意图:为学生对本节课证明等腰三角形的定理作铺垫
2.新授课
猜想:如果一个三角形是等腰三角形,那么这个三角形的两个底角有什么关系呢?如何证明呢?
(1)画出图形;
(2)根据图形写出已知求证;
(3)写出推理过程
已知:如图1-1,在△ABC中,AB=AC,求证:∠B=∠C
分析:(折叠法)要证明两底角相等,将等腰三角形对折,折痕将等腰三角形分成了两个全等三角形,可作一条辅助线(注意辅助线要画成虚线)
设计意图:锻炼学生的动手操作能力
证明:如图1-2,取BC的中点D,连接AD
(已知)AB、AC,在△BAD和△CAD中,BDxCD(已作),AD、AD(公共边),∴△BAD≌△CAD(SSS)
∴∠B=∠C(全等三角形的对应角相等)你还有其他证明方法吗?与同伴交流作出底边上的高或作出顶角的平分线,大家可以自己证明
3.巩固练习
在△ABC中,AB=AC
(1)若∠A=40°,则∠C等于多少度?
(2)若∠B=72°,则∠A等于多少度?
设计意图:加强学生对等腰三角形定理的认识
4.引出推论
在图1-2中,观察AD还具有怎样的性质?为什么?由此能得到什么结论?我们作出了底边上的中线,已证明△BAD≌△CAD
所以∠BAD=∠CAD(全等三角形对应角相等),即AD也是顶角的平分线,∠ADB=∠ADC(全等三角形对应角相等)。因为∠BDC=180°(平角的定义),所以∠ADB=90°,即AD也是底边上的高线
由此我们得到以下推论:等腰三角形顶角的角平分线、底边上的中线及底边上的高线互相重合(简称“三线合一”)
5.随堂练习
(1)如图1-3,在△ABC中,AB=AC,且AD⊥BC,已知BD=2cm,则DC=___cm,BC=___cm
(2)如图1-4,在△ABD中,AC⊥BD,垂足为C,AC=BC=BD
①求证:△ABD是等腰三角形,②求∠BAD的度数
图1-4
6.课堂小结
等腰三角形的性质定理:
等腰三角形的两个底角相等(简写成“等边对等角”)。等腰三角形顶角的平分线平分底边并且垂直于底边。
等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合,简称“三线合一”。
初中数学等腰三角形的性质教案 篇4
一、教材分析
1、教材的地位和作用
等腰三角形是最常见的图形,由于它具有一些特殊性质,因而在生活中被广泛应用。等腰三角形的性质,特别是它的两个底角相等的性质,可以实现一个三角形中边相等与角相等之间的转化,也是今后论证两角相等的重要依据之一。等腰三角形沿底边上的高对折完全重合是今后论证两条线段相等及线段垂直的重要依据。同时通过这节课的学习还可培养学生的动手、动脑、动口、合作交流等能力,加强学生对直觉、猜想、演绎、类比、归纳、转化等数学思想、方法的领会掌握,培养学生的探究能力和创新精神。
2、教材重组
《数学新课程标准》要求教师要创造性地使用教材,积极开发,利用各种教学资源,为学生提供丰富多彩的学习素材,所以我制作了学生非常熟悉和感兴趣的电视转播塔、房屋人字架等课件,让学生观察寻找出其熟悉的几何图形,然后动手作出这个图形,并裁下来,动手折叠,发现规律。如此把教材内容还原成生动活泼的思维创造活动,促使学生在教师指导下生动活泼地、主动地、富有个性地学习。
3、学习目标
根据《数学新课程标准》对学生在知识与技能、数学思考以及情感与态度等方面的要求,我把本节课的学习目标确定为:
知识目标:了解等腰三角形和等边三角形有关概念,探索并掌握等腰三角形和等边三角形性质,能应用性质进行计算和解决生产、生活中的有关问题。
情感目标:通过创设问题情境,激发学生自主探求的热情和积极参与的意识;通过合作交流,培养学生团结协作、乐于助人的品质。
4、教学重、难点:
重点:等腰三角形性质的探索及其应用。
难点:等腰三角形性质的探索及证明。
5、突破难点策略:
通过创设具有启发性的、学生感兴趣的、有助自主学习和探索的问题情境,使学生在活动丰富、思维积极的状态中进行探究学习,组织好合作学习,并对合作过程进行引导,使学生朝着有利于知识建构的方向发展。
二、学情分析
刚进入初二的学生观察、操作、猜想能力较强,但演绎推理、归纳、运用数学意识的思想比较薄弱,思维的广阔性、敏捷性、结密性、灵活性比较欠缺,自主探究和合作学习能力也需要在课堂教学中进一步加强和引导。
三、教法分析
《数学课程标准》要求教师应激发学生学习的积极性,向学生提供充分从事数学活动的机会,帮助他们进行自主探索和合作交流。为了顺利达到这一目标,引导学生探索性学习,唤起学生的创新意识,我根据教材特点和学生实际,采用了以观察法、发现法、实验操作法、探究法为主的教学方法进行教学。
四、学法建构
《数学新课程标准》指出自主探索与合作交流是学生的主要学习方式,因此,通过本节教学,我将对学生进行以下学法指导:
1、指导学生动眼观察、动手操作、动脑思考、动口表达,注重多感官参与,多种心智能力投入,使学生始终处于主动探索状态。
2、向学生渗透探究、发现的学习方法,培养他们在合作中共同探索新知识、解决新问题的能力。
五、教学模式
本节课设计的指导思想是全日制义务教育《数学课程标准》及新课程改革的教学理念。
《数学课程标准》提出了“问题情境——建立模型——解释、运用与拓展”的基本模式,在此模式指导下,本节课我将采用“创设情境——自主探索——合作交流——引导评价——实践应用——反思归纳”的教学模式,力求着眼于学生探究能力和创造性思维能力的培养,提高学生的自主意识和合作精神。
六、教学程序和设想
《数学课程标准》强调,教师应发扬教学民主,成为学生数学学习活动的组织者、引导者、合作者。据此本节课我分以下环节组织教学。
(一)创设情境,观察联想
1、多媒体展示电视转播台、房屋人字架,让学生观察找出其中的几何图形?(等腰三角形、四边形、梯形)
2、两幅图中都有哪种几何图形?(等腰三角形)
从学生身边的生活和已有知识出发,创设情境,引导学生观察、联想,使学生感受到生活中处处有数学,并学会从数学的角度去观察事物,思考问题,激发学生对学习数学的兴趣和愿望。
(二)动手操作,揭示课题
1、什么是等腰三角形?等边三角形?它们有何关系?
2、请学生动手作等腰三角形ABC,使AB=AC。裁下这个三角形,再动手折叠,当两腰重合时,找出发现哪些结论。
3、小组交流发现的结论。(两底重合,折痕是顶角角平分线,底边上的高,底边上的中线。 )
4、小组代表用语言表达得出的结论。
5、多媒体演示折叠过程,再现归纳得出的结论。
6、揭示、板书课题:等腰三角形性质。ト醚生温习、重现已学相关知识,为学习新知识做铺垫。
波利亚曾说过:“学习任何知识的最佳途径都是由自己去发现。”《新课程标准》要求通过实践、思考探索、交流获得知识,所以我在这里力图通过学生动手操作、动眼观察、动口交流表达,使学生充分感知等腰三角形性质。
(三)独立思考,探究新知
对于观察得出的结论是否能进行论证,请学生动手试一试。
放手让学生决定自己的探索方向,鼓励学生选用不同的方法,把期望带给学生,让学生最大限度地发现自己的潜能,使学生形成自己对数学知识的理解和有效的学习策略。
(四)合作探究,交流创新
当部分同学找到了问题的突破口,而少数找不到思路的同学也充分感知了困难,尝试了困难后,及时组织学生进行合作探究和交流,并作为合作者参与到学生的交流中。
组织学生探索、交流,有利于开阔学生的视野,形成一个既有独立思考,又有互相合作,广泛交流的学习氛围,培养学生合作精神。
(五)引导评价,形成规律
1、小组合作交流后,请各小组一名代表上台讲解(给学困生提供上台机会,让他们尝试成功的喜悦)共有三种辅助方法:
作∠A的角平分线AD、作 AD⊥BC、作BC边上的中线AD。
通过师生、生生的相互补充评价,将探究活动引向深入,强化学生的创新思维训练。
2、等边三角形是特殊等腰三角形,它又具有哪些性质呢?
学生探索能得出:
①每个角都相等,且都是60°,
②每边上的高、中线、角平分线互相重合。
运用知识迁移在新知识的基础上探索新的未知,把学生的探究兴趣进一步推向高潮,激励学生要敢于迎接挑战,不断追求,锻炼意志。
13、阅读课本:等腰三角形性质(一)
(注意:等边对等角、三线合一的几何语言表达)。培养学生的阅读能力和准确的几何语言表达能力。
(六)实践应用,巩固提高
例:已知房屋的顶角∠ABC=100°,过屋顶的立柱AD⊥BC,屋椽AB=AC,根据图中条件,你能求出哪些角的度数。
把例题改编成开放题,为学生再一次创设探究情境,进一步培养学生的探究能力和思维的广阔性、灵活性。ゴ锉炅废(抢答)
①填空。设计基础练习,体现素质教育的全员性,通过抢答训练,更好地激发学生的学习兴趣和求知欲望。
②△ABC中,AB=AC,D为BC上一点,DE⊥AB,FD⊥BC交AC于F点,∠A=56°,求∠ EDF的度数,提高学生分析问题和解决问题的实践能力。
③应用:某厂车间的人字屋架为等腰三角形,跨度AB=12米,为使屋架更加牢固,需安装中柱CD,你能帮工人师傅确定中柱的位置吗?说明选用的工具和原理。ソ一步体现数学来源于实践,又应用于实践,培养学生的应用意识和应用能力。
(七)反思归纳,形成结构
1、引导学生对学习过程进行小结:
①本节课你有哪些收获?(知识、方法、技能),你认为重点是什么?
②所学知识能解决哪些实际问题?
③本节课所运用的学习方法对你今后学习有什么启示?
2、布置作业:(分层布置)
这样进行课堂小结,关注学生个体差异,使每一个学生都有成功的学习体验,得到相应的提高和发展,进一步培养学生的主体意识,锻炼学生的归纳总结能力。
等腰三角形 篇5
§14.3.1.1 (二)
教学目标
1、 理解并掌握等腰三角形的判定定理及推论
2、 能利用其性质与判定证明线段或角的相等关系。
教学重点
等腰三角形的判定定理及推论的运用
教学难点
正确区分等腰三角形的判定与性质。
能够利用等腰三角形的判定定理证明线段的相等关系。
教学过程:
一、复习等腰三角形的性质
二、新授:
i提出问题,创设情境
出示投影片。某地质专家为估测一条东西流向河流的宽度,选择河流北岸上一棵树(b点)为b标,然后在这棵树的正南方(南岸a点抽一小旗作标志)沿南偏东60°方向走一段距离到c处时,测得∠acb为30°,这时,地质专家测得ac的长度就可知河流宽度。
学生们很想知道,这样估测河流宽度的根据是什么?带着这个问题,引导学生学习“等腰三角形的判定”。
ii引入新课
1.由性质定理的题设和结论的变化,引出研究的内容——在△abc中,苦∠b=∠c,则ab= ac吗?
作一个两个角相等的三角形,然后观察两等角所对的边有什么关系?
2.引导学生根据图形,写出已知、求证。
2、小结,通过论证,这个命题是真命题,即“等腰三角形的判定定理”(板书定理名称).
强调此定理是在一个三角形中把角的相等关系转化成边的相等关系的重要依据,类似于性质定理可简称“等角对等边”。
4.引导学生说出引例中地质专家的测量方法的根据。
iii例题与练习
1.如图2
其中△abc是等腰三角形的是 [ ]
2.①如图3,已知△abc中,ab=ac.∠a=36°,则∠c______(根据什么?).
②如图4,已知△abc中,∠a=36°,∠c=72°,△abc是______三角形(根据什么?).
③若已知∠a=36°,∠c=72°,bd平分∠abc交ac于d,判断图5中等腰三角形有______.
④若已知 ad=4cm,则bc______cm.
3.以问题形式引出推论l______.
4.以问题形式引出推论2______.
例: 如果三角形一个外角的平分线平行于三角形的一边,求证这个三角形是等腰三角形。
分析:引导学生根据题意作出图形,写出已知、求证,并分析证明。
练习:5.(l)如图6,在△abc中,ab=ac,∠abc、∠acb的平分线相交于点f,过f作de//bc,交ab于点d,交ac于e.问图中哪些三角形是等腰三角形?
(2)上题中,若去掉条件ab=ac,其他条件不变,图6中还有等腰三角形吗?
iv课堂小结
1.判定一个三角形是等腰三角形有几种方法?
2.判定一个三角形是等边三角形有几种方法?
3.等腰三角形的性质定理与判定定理有何关系?
4.现在证明线段相等问题,一般应从几方面考虑?
v布置作业
1.阅读教材
2.书面作业:教材第150页第12题
3、《课堂感悟与探究》
等腰三角形 篇6
§14.3.1.1 等腰三角形
教学目标
1.等腰三角形的概念。
2.等腰三角形的性质。
3.等腰三角形的概念及性质的应用。
教学重点
1.等腰三角形的概念及性质。
2.等腰三角形性质的应用。
教学难点
等腰三角形三线合一的性质的理解及其应用。
教学过程
ⅰ.提出问题,创设情境
在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案。这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形。来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?
有的三角形是轴对称图形,有的三角形不是。
问题:那什么样的三角形是轴对称图形?
满足轴对称的条件的三角形就是轴对称图形,也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形。
我们这节课就来认识一种成轴对称图形的三角形──等腰三角形。
ⅱ.导入新课
要求学生通过自己的思考来做一个等腰三角形。
作一条直线l,在l上取点a,在l外取点b,作出点b关于直线l的对称点c,连结ab、bc、ca,则可得到一个等腰三角形。
等腰三角形的定义:有两条边相等的三角形叫做等腰三角形。相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角。同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角。
思考:
1.等腰三角形是轴对称图形吗?请找出它的对称轴。
2.等腰三角形的两底角有什么关系?
3.顶角的平分线所在的直线是等腰三角形的对称轴吗?
4.底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢?
结论:等腰三角形是轴对称图形。它的对称轴是顶角的平分线所在的直线。因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线。
要求学生把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系。
沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高。
由此可以得到等腰三角形的性质:
1.等腰三角形的两个底角相等(简写成“等边对等角”).
2.等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合(通常称作“三线合一”).
由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质。同学们现在就动手来写出这些证明过程).
如右图,在△abc中,ab=ac,作底边bc的中线ad,因为
所以△bad≌△cad(sss).
所以∠b=∠c.
]如右图,在△abc中,ab=ac,作顶角∠bac的角平分线ad,因为
所以△bad≌△cad.
所以bd=cd,∠bda=∠cda= ∠bdc=90°.
[例1]如图,在△abc中,ab=ac,点d在ac上,且bd=bc=ad,
求:△abc各角的度数。
分析:
根据等边对等角的性质,我们可以得到
∠a=∠abd,∠abc=∠c=∠bdc,
再由∠bdc=∠a+∠abd,就可得到∠abc=∠c=∠bdc=2∠a.
再由三角形内角和为180°,就可求出△abc的三个内角。
把∠a设为x的话,那么∠abc、∠c都可以用x来表示,这样过程就更简捷。
解:因为ab=ac,bd=bc=ad,
所以∠abc=∠c=∠bdc.
∠a=∠abd(等边对等角).
设∠a=x,则
∠bdc=∠a+∠abd=2x,
从而∠abc=∠c=∠bdc=2x.
于是在△abc中,有
∠a+∠abc+∠c=x+2x+2x=180°,
解得x=36°.
在△abc中,∠a=35°,∠abc=∠c=72°.
[师]下面我们通过练习来巩固这节课所学的知识。
ⅲ.随堂练习
(一)课本p141练习 1、2、3.
(二)阅读课本p138~p140,然后小结。
ⅳ.课时小结
这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用。等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高。
我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们。
ⅴ.作业
(一)课本p147─1、3、4、8题。
课后作业:<<课堂感悟与探究>>
板书设计
14.3.1.1 等腰三角形(一)
一、设计方案作出一个等腰三角形
二、等腰三角形性质
1.等边对等角
2.三线合一
参考练习
一、选择题
1.如果△abc是轴对称图形,则它的对称轴一定是( )
a.某一条边上的高; b.某一条边上的中线
c.平分一角和这个角对边的直线; d.某一个角的平分线
2.等腰三角形的一个外角是100°,它的顶角的度数是( )
a.80° b.20° c.80°和20° d.80°或50°
答案:1.c 2.c
二、已知等腰三角形的腰长比底边多2cm,并且它的周长为16cm.
求这个等腰三角形的边长。
解:设三角形的底边长为xcm,则其腰长为(x+2)cm,根据题意,得
2(x+2)+x=16.
解得x=4.
所以,等腰三角形的三边长为4cm、6cm和6cm.
等腰三角形 篇7
知识结构:
重点与难点分析:
本节内容的重点是定理。本定理是证明两条线段相等的重要定理,它是把三角形中角的相等关系转化为边的相等关系的重要依据,此定理为证明线段相等提供了又一种方法,这是本节的重点。推论1、2提供证明等边三角形的方法,推论3是直角三角形的一条重要性质,在直角三角形中找边和角的等量关系经常用到此推论。
本节内容的难点是性质与判定的区别。等腰三角形的性质定理和判定定理是互逆定理,题设与结论正好相反。学生在应用它们的时候,经常混淆,帮助学生认识判定与性质的区别,这是本节的难点。另外本节的文字叙述题也是难点之一,和上节结合让学生逐步掌握解题的思路方法。由于知识点的增加,题目的复杂程度也提高,一定要学生真正理解定理和推论,才能在解题时从条件得到用哪个定理及如何用。
教法建议:
本节课教学方法主要是“以学生为主体的讨论探索法”。在数学教学中要避免过多告诉学生现成结论。提倡教师鼓励学生讨论解决问题的方法,引导他们探索数学的内在规律。具体说明如下:
(1)参与探索发现,领略知识形成过程
学生学习过互逆命题和互逆定理的概念,首先提出问题:等腰三角形性质定理的逆命题的什么?找一名学生口述完了,接下来问:此命题是否为真命?等同学们证明完了,找一名学生代表发言。最后找一名学生用文字口述定理的内容。这样很自然就得到了定理。这样让学生亲自动手实践,积极参与发现,满打满算了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会。
(2)采用“类比”的学习方法,获取知识。
由性质定理的学习,我们得到了几个推论,自然想到:根据定理,我们能得到哪些特殊的结论或者说哪些推论呢?这里先让学生发表意见,然后大家共同分析讨论,把一些有价值的、甚至就是教材中的推论板书出来。如果学生提到的不完整,教师可以做适当的点拨引导。
(3)总结,形成知识结构
为了使学生对本节课有一个完整的认识,便于今后的应用,教师提出如下问题,让学生思考回答:(1)怎样判定一个三角形是等腰三角形?有哪些定理依据?(2)怎样判定一个三角形是等边三角形?
一。教学目标 :
1.使学生掌握定理及其推论;
2.掌握等腰三角形判定定理的运用;
3.通过例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力;
4.通过自主学习的发展体验获取数学知识的感受;
5.通过知识的纵横迁移感受数学的辩证特征。
二。教学重点:定理
三。教学难点 :性质与判定的区别
四。教学用具:直尺,微机
五。教学方法:以学生为主体的讨论探索法
六。教学过程 :
1、新课背景知识复习
(1)请同学们说出互逆命题和互逆定理的概念
估计学生能用自己的语言说出,这里重点复习怎样分清题设和结论。
(2)等腰三角形的性质定理的内容是什么?并检验它的逆命题是否为真命题?
启发学生用自己的语言叙述上述结论,教师稍加整理后给出规范叙述:
1.定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等。
(简称“等角对等边”).
由学生说出已知、求证,使学生进一步熟悉文字转化为数学语言的方法。
已知:如图,△ABC中,∠B=∠C.
求证:AB=AC.
教师可引导学生分析:
联想证有关线段相等的知识知道,先需构成以AB、AC为对应边的全等三角形。因为已知∠B=∠C,没有对应相等边,所以需添辅助线为两个三角形的公共边,因此辅助线应从A点引起。再让学生回想等腰三角形中常添的辅助线,学生可找出作∠BAC的平分线AD或作BC边上的高AD等证三角形全等的不同方法,从而推出AB=AC.
注意:(1)要弄清判定定理的条件和结论,不要与性质定理混淆。
(2)不能说“一个三角形两底角相等,那么两腰边相等”,因为还未判定它是一个等腰三角形。
(3)判定定理得到的结论是三角形是等腰三角形,性质定理是已知三角形是等腰三角形,得到边边和角角关系。
2.推论1:三个角都相等的三角形是等边三角形。
推论2:有一个角等于60°的等腰三角形是等边三角形。
要让学生自己推证这两条推论。
小结:证明三角形是等腰三角形的方法:①等腰三角形定义;②等腰三角形判定定理。
证明三角形是等边三角形的方法:①等边三角形定义;②推论1;③推论2.
3.应用举例
例1.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形。
分析:让学生画图,写出已知求证,启发学生遇到已知中有外角时,常常考虑应用外角的两个特性①它与相邻的内角互补;②它等于与它不相邻的两个内角的和。要证AB=AC,可先证明∠B=∠C,因为已知∠1=∠2,所以可以设法找出∠B、∠C与∠1、∠2的关系。
已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC.
求证:AB=AC.
证明:(略)由学生板演即可。
补充例题:(投影展示)
1.已知:如图,AB=AD,∠B=∠D.
求证:CB=CD.
分析:解具体问题时要突出边角转换环节,要证CB=CD,需构造一个以 CB、CD为腰的等腰三角形,连结BD,需证∠CBD=∠CDB,但已知∠B=∠D,由AB=AD可证∠ABD=∠ADB,从而证得∠CDB=∠CBD,推出CB=CD.
证明:连结BD,在 中, (已知)
(等边对等角)
(已知)
即
(等教对等边)
小结:求线段相等一般在三角形中求解,添加适当的辅助线构造三角形,找出边角关系。
2.已知,在 中, 的平分线与 的外角平分线交于D,过D作DE//BC交AC与F,交AB于E,求证:EF=BE-CF.
分析:对于三个线段间关系,尽量转化为等量关系,由于本题有两个角平分线和平行线,可以通过角找边的关系,BE=DE,DF=CF即可证明结论。
证明: DE//BC(已知)
,
BE=DE,同理DF=CF.
EF=DE-DF
EF=BE-CF
小结:
(1)等腰三角形判定定理及推论。
(2)等腰三角形和等边三角形的证法。
七。练习
教材 P.75中1、2、3.
八。作业
教材 P.83 中 1.1)、2)、3);2、3、4、5.
九。板书设计
《等腰三角形》教学反思 篇8
本节课主要是让学生理解等腰三角形的判定方法及应用 ,并使学生通过对等腰三角形的判定方法的探索,体会探索学习的乐趣。在教学方面,主要按以下步骤进行教学,教学效果比较好。
一、教学建议
1、课前先简单复习等腰三角形的性质1“等边对等角”,这为后面讲等腰三角形的判定“等角对等边”留下铺垫。这样做也培养了学生数学思维的严密性。
2、在学习等腰三角形的判定的时候,教师一定要创设一种切合实际的背景出来,从而使学生明白数学与实际生活紧密相连,学好数学,才能解决生活中的难题。这样的课堂比单纯教师说出来的效果要好很多,也使学生对等腰三角形判定的掌握更深刻得多。另外,在得出等腰三角形的判定以后,还要问学生怎样用数学语言来表示,这样才能使学生在做题时,书写格式更流畅。
3、在做练习时,对比较简单的题目,就让学生先做,然后老师点评;对比较难的题目,先让学生讨论,再让学生上来板书,或者教师和学生先一起来分析解题思路,再让学生做,然后教师点评。这样做的目的,是把学习的主动权还给学生,激发学生学习数学的积极性和创造性,从而使数学课堂充满活力。
二、教学反思
1、在授课过程中,教师要给学生留下了很大的思维空间,通过自己的亲自操作,运用探索发现法,让学生积极参与自主探究,合作交流,把主体地位返还给学生。无论是判定的推导,还是判定的应用,都是在教师的引导下,学生自己完成的,教师这样做,重视了知识的形成过程,在应用中又开拓了学生的视野,使学生的发散思维与应用技巧得到了锻炼。
2、充分利用教材,在练习题与例题的编排上打破常规,让学生通过与生活紧密联系的背景,通过质疑—猜想—类比—探索—归纳—总结出等腰三角形的判定方法,再让学生用等腰三角形的判定方法来解决不同类型的题目,适时地参透了类比的数学思想,并深刻地体现了新教材的课改理念。